在人工智能蓬勃发展的当下,语言模型作为其中的关键技术(LLM的擅长与不擅长:深入剖析大语言模型的能力边界),深刻影响着各个行业的发展和企业的运营模式。长期以来,“越大越好” 的理念在人工智能领域根深蒂固,企业竞相投入大量资源打造参数规模庞大的模型。然而,随着技术的演进和实践的深入,小型语言模型(SLMs)凭借其独特优势逐渐成为企业关注的焦点(小模型在RAG(Retrieval-Augmented Generation)系统中的应用:提升效率与可扩展性的新路径),在诸多方面展现出了超越大型语言模型(LLMs)的潜力,成为企业优化 AI 应用的新选择。
行业趋势转变:大模型时代的落幕与小模型的崛起
在过去的一段时间里,AI 领域仿佛陷入了一场 “军备竞赛”,每月都有参数越来越多的大型模型诞生,企业甚至不惜斥巨资打造价值 100 亿美元的 AI 数据中心来支持这些模型的运行。然而,这种一味追求规模的发展模式正在发生变化。Ilya Sutskever 在 NeurIPS 2024 上提出 “我们所熟知的预训练无疑将会终结”,这一观点预示着模型规模无限扩张的时代即将走向尾声,行业的关注点开始转向对现有方法和算法的改进。
与此同时,小型语言模型逐渐崭露头角,在行业中受到越来越多的重视。Hugging Face 的 CEO Clem Delang