大语言模型(LLM)已成为人工智能领域的变革性力量,在从自然语言处理到内容生成等众多应用场景中得以广泛应用。然而,其推理过程的高计算强度带来了严峻挑战,尤其是随着模型规模和复杂度的不断攀升。因此,优化 LLM 推理(Google DeepMind研究员关于LLM推理讲座的深度解析(含原视频链接))对于满足现实世界部署的需求至关重要,在实际应用中,低延迟、高吞吐量和高效的资源利用是实现流畅用户体验的关键因素。
推理优化旨在在不牺牲 LLM 性能的前提下,提高其速度、效率和资源管理能力。例如,在检索增强生成(RAG)(选择合适自己的检索增强生成(RAG)技术:综合指南)管道中,由于需要将外部信息整合到 LLM 的输入中,处理工作量大幅增加。在这种情况下,优化推理对于确保及时有效的响应尤为关键。接下来,本文将详细阐述各种优化技术及其特点。
一、量化技术
(一)原理与实现方式
量化(量化技术助力LLM(Large Language Model)轻量级部署)是通过降低模型参数(如权重和激活值)的数值精度来实现的。其核心思想是减少表示模型内信号和数据所需的位数,从而减小模型尺寸并加快处理速度。这一过程可以在训练后(PTQ)或训练过程中(QAT)进行。在 PTQ 中,模型训练完成后对权重进行转换;而 QAT 则将量化集成到训练流程中。常见的仿