ReSearch:通过强化学习实现LLM推理与搜索协同的创新框架

当面对复杂的多跳问题时,仅依靠模型内部的知识储备往往难以准确作答,因为这些问题需要多步检索外部信息才能找到答案。ReSearch 框架应运而生,它创新性地将推理与外部搜索过程相结合,通过强化学习(通俗讲解DeepSeek中的GRPO:强化学习里的神奇算法)的方式训练大语言模型,在不依赖推理步骤监督数据的情况下,实现了更高效、准确的复杂问题解答。

一、ReSearch 框架概述

ReSearch 框架的核心在于将推理链的概念进行拓展。传统的基于文本的思考方式(如 DeepSeek - R1 中被<think></think>包围的内容)只是其中一部分,搜索查询(被<search></search>包围)和检索结果(被<result></result>包围)也被纳入推理链。在这个框架里,搜索操作不再是孤立的,而是与基于文本的思考相互作用。基于文本的思考会引导何时以及如何进行搜索,而搜索结果又会影响

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型之路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值