1. 数据治理建设背景与目标
集团数据治理旨在通过统一管控集团数据资产,实现数据的组织建设、管理考核、资源利用等多维度优化。该方案旨在构建一个高效、安全、可信赖的数据环境,以支撑集团的战略一致性顶层设计,并赋能全集团的业务创新与决策。通过数据治理,集团期望实现数据的标准化、规范化管理,提升数据质量,促进数据共享与利用,最终为业务发展和战略决策提供有力支持。
2. 数据资产管控蓝图
蓝图规划包括统一管控集团数据资产,通过多域多管理空间支撑集团建设统一数据资产。这涉及数据的集成、存储、计算、研发、运维、服务等多个环节,旨在形成完整的数据治理体系。同时,方案强调数据智能应用的重要性,通过人工智能、商业分析等手段,满足垂直业务和通用数据分析需求,为集团提供智能决策支持。
3. 数据治理组织架构与职责
数据治理需要建立完善的组织团队进行保障。这包括数据管理部门、数据运营组、数据资产组、数据安全组等多个团队,各自承担不同的职责。例如,数据管理部门负责引领数据战略,组织数据战略委员会的决策会议等;数据运营组则负责BI模型/算法的管理、技术运营等。通过明确的组织架构和职责分工,确保数据治理工作的顺利推进。
4. 数据标准与规范制定
制定数据标准及规范是数据治理的重要一环。这包括基础类数据标准、分析类数据标准、监管类数据标准等,以及数据开发、建模、质量、安全等方面的规范。通过制定统一的数据标准和规范,确保数据的准确性、一致性、可用性,为数据共享和利用奠定基础。
5. 数据制度与流程梳理
在数据治理体系架构下,制定相关的制度、办法是数据治理能顺利实施的有力保证。这包括数据政策、数据管理专题制度、办法、指引等,以及数据管理专题实施细则等。通过梳理和优化数据制度与流程,确保数据治理工作的规范化、标准化,提高数据管理效率和质量。
6. 系统数据现状盘点与治理平台搭建
系统数据现状盘点是数据治理的基础工作之一。通过盘点系统数据资源目录,了解数据的来源、结构、存储等情况,为后续的数据治理工作提供依据。同时,搭建数据治理平台,实现数据的集成、管理、监控等功能,为数据治理提供技术支持。数据治理平台包括主数据管理、数据质量管理、数据安全管控等多个模块,实现数据的全生命周期管理。
7. 数据质量管理
数据质量管理是数据治理的核心内容之一。通过搭建可量化的数据质量评估体系框架,对重要业务系统的数据质量进行评估和提升。这包括确定数据质量评估对象、利用质量平台计算综合得分、制定数据质量改进计划等措施。通过持续的数据质量管理,确保数据的准确性、完整性、时效性,提高数据的应用价值。
8. 数据安全管控
数据安全是数据治理不可忽视的重要方面。通过实施网络隔离、数据出口管控、数据脱敏等安全措施,确保数据的安全性和隐私性。同时,建立数据安全审计机制ÿ