偏最小二乘回归(10折交叉验证)

本文介绍了如何在R语言中利用 caret 和 pls 包进行偏最小二乘回归(PLS)的10折交叉验证。通过设置交叉验证参数,训练并评估模型,展示模型性能指标如RMSE、MAE和R-squared。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. PLS回归旨在建立X和Y之间的预测模型。这种模型可以用来预测Y,基于已知的X变量值。
  2. 原理

    PLS回归通过将X和Y变量转换到新的空间中,称为潜在变量空间(Latent Variable Space),来建立X和Y之间的线性关系。在这个新的空间中,尽可能多地解释X和Y的协方差。这些新的变量称为潜在变量(Latent Variables)或部分变量(Partial Variables)。PLS回归的核心思想是同时对X和Y进行降维,找到X和Y之间最大化协方差的方向。
  3. 优缺点     (1)PLS回归可以处理高度共线性的数据。(2)它适用于变量数目远远大于样本数目的情况,即所谓的小样本大特征问题。(3)它对异常值不敏感,并且能够在存在缺失数据的情况下进行建模。
  4. 在R语言中,可以使用不同的包和函数来实现偏最小二乘回归(PLSR)的10折交叉验证-caret包caret包提供了一种简单而灵活的方法来执行交叉验证。您可以使用trainControl函数设置交叉验证的参数,然后将其传递给train函数中的trControl参数。pls包pls包提供了用于偏最小二乘回归的函数,并且它也支持交叉验证。您可以使用p
### 关于偏最小二乘回归交叉验证 #### 方法概述 偏最小二乘回归(PLS)是一种用于建模两个矩阵之间关系的技术,尤其适用于存在多重共线性的高维数据。为了评估模型性能并防止过拟合,通常采用交叉验证技术。其中最常用的是k交叉验证,在此过程中,原始样本被随机划分为k个子集或叠。每次迭代时,其中一个叠作为验证集,其余部分构成训练集。该过程重复k次,确保每个叠都充当一次验证集。 对于PLS而言,交叉验证不仅有助于估计模型泛化能力,还能够帮助确定最佳成分数目——即潜变量的数量[n_components],这对于构建稳健有效的预测模型至关重要[^3]。 #### 实现细节 在Python环境中利用`sklearn`库可以方便地执行上述操作: ```python from sklearn.cross_decomposition import PLSRegression from sklearn.metrics import mean_squared_error, r2_score from sklearn.model_selection import cross_val_predict # 初始化PLS对象,并指定初始组件数 pls = PLSRegression(n_components=5) # 使用fit方法基于整个数据集训练初步模型 pls.fit(X, y) # 应用cross_val_predict函数进行10交叉验证预测 y_cv = cross_val_predict(pls, X, y, cv=10) # 计算评价指标如均方误差(mse)和决定系数() score = r2_score(y, y_cv) mse = mean_squared_error(y, y_cv) ``` 这段代码展示了如何设置一个具有五个潜在变量的PLS实例,接着通过调用`cross_val_predict()`来进行交叉验证以获得更可靠的预测结果。最后计算了两种常用的性能度量标准:MSE衡量平均偏差大小;而R²反映了模型解释变异的比例,其值越接近1越好。 #### 场景应用 当面对多变量且可能存在高度相关特征的数据集时,比如化学计量学中的光谱数据分析或者生物信息学领域内的基因表达研究等场合下,PLS结合交叉验证能有效提升预测精度与稳定性。此外,在市场营销调研里用来探索消费者行为模式同产品属性之间的联系也分常见[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lltanwh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值