- PLS回归旨在建立X和Y之间的预测模型。这种模型可以用来预测Y,基于已知的X变量值。
-
原理:
PLS回归通过将X和Y变量转换到新的空间中,称为潜在变量空间(Latent Variable Space),来建立X和Y之间的线性关系。在这个新的空间中,尽可能多地解释X和Y的协方差。这些新的变量称为潜在变量(Latent Variables)或部分变量(Partial Variables)。PLS回归的核心思想是同时对X和Y进行降维,找到X和Y之间最大化协方差的方向。 - 优缺点 (1)PLS回归可以处理高度共线性的数据。(2)它适用于变量数目远远大于样本数目的情况,即所谓的小样本大特征问题。(3)它对异常值不敏感,并且能够在存在缺失数据的情况下进行建模。
- 在R语言中,可以使用不同的包和函数来实现偏最小二乘回归(PLSR)的10折交叉验证-caret包:
caret
包提供了一种简单而灵活的方法来执行交叉验证。您可以使用trainControl
函数设置交叉验证的参数,然后将其传递给train
函数中的trControl
参数。pls包:pls
包提供了用于偏最小二乘回归的函数,并且它也支持交叉验证。您可以使用p
03-13