uva 12125 March of the Penguins
题目大意:网格上有n(
n<=100
)片荷叶,初始时第i片荷叶上有ni只企鹅(
0<=ni<=10
)。由于承受能力有限,第i片荷叶最多只能承受mi(
1<=mi<=200
)只企鹅从上米娜跳走。一只企鹅最多能跳D(
D<=105
)单位距离。要求所有企鹅在同一片荷叶上集合。问哪些荷叶可以成为企鹅们集合的地点。
解题思路:企鹅为什么不游泳……。每片荷叶是有容量的,所以每片荷叶都要进行拆点,拆成两个点,容量为这片荷叶所能承受的最多跳跃次数。设置一个超级源点,连向所有的荷叶,容量为该荷叶上初始企鹅的数量。然后枚举每片荷叶作为起点,看最后流出的最大流会不会等于所有企鹅的数量,会的话,记录当前荷叶(注意:荷叶编号是从0开始的)。每次求最大流记得初始化边的流量。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <queue>
using namespace std;
const int PO = 105;
const int N = 1000;
const int M = 20000;
const int INF = 0x3f3f3f3f;
typedef long long ll;
int n, rec[N], s, t, cnt, sum;
double l;
struct Node{
int x, y, a, b;
}node[PO];
struct Edge{
int from, to, cap, flow;
};
vector<Edge> edges;
vector<int> G[M];
void init() {
sum = 0;
cnt = 0;
for (int i = 0; i < M; i++) G[i].clear();
edges.clear();
}
void addEdge(int from, int to, int cap) {
edges.push_back((Edge){from, to, cap, 0});
edges.push_back((Edge){to, from, 0, 0});
int m = edges.size();
G[from].push_back(m - 2);
G[to].push_back(m - 1);
}
int vis[N], d[N];
int BFS() {
memset(vis, 0, sizeof(vis));
queue<int> Q;
Q.push(s);
d[s] = 0;
vis[s] = 1;
while (!Q.empty()) {
int u = Q.front(); Q.pop();
for (int i = 0; i < G[u].size(); i++) {
Edge &e = edges[G[u][i]];
if (!vis[e.to] && e.cap > e.flow) {
vis[e.to] = 1;
d[e.to] = d[u] + 1;
Q.push(e.to);
}
}
}
return vis[t];
}
int cur[N];
int DFS(int u, int a) {
if (u == t || a == 0) return a;
int flow = 0, f;
for (int &i = cur[u]; i < G[u].size(); i++) {
Edge &e = edges[G[u][i]];
if (d[u] + 1 == d[e.to] && (f = DFS(e.to, min(a, e.cap - e.flow))) > 0) {
e.flow += f;
edges[G[u][i]^1].flow -= f;
flow += f;
a -= f;
if (a == 0) break;
}
}
return flow;
}
int dinic() {
int ans = 0;
while (BFS()) {
memset(cur, 0, sizeof(cur));
ans += DFS(s, INF);
}
return ans;
}
double getDis(int x, int y) {
double px = node[x].x, py = node[x].y;
double qx = node[y].x, qy = node[y].y;
return pow(px - qx, 2) + pow(py - qy, 2);
}
void input() {
s = 0;
scanf("%d %lf", &n, &l);
double a, b;
int c, d;
for (int i = 1; i <= n ;i++) {
scanf("%lf %lf %d %d",&a, &b, &c, &d);
sum += c;
node[i] = (Node){a, b, c, d};
addEdge(i, i + n, d);
addEdge(s, i, c);
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
if (i == j) continue;
if (l * l - getDis(i, j) > 1e-9) {
addEdge(i + n, j, INF);
}
}
}
}
void ClearF() {
for (int i = 0; i < edges.size(); i++) {
edges[i].flow = 0;
}
}
void solve() {
for (int i = 1; i <= n; i++) {
ClearF();
t = i;
int temp = dinic();
if (temp == sum) {
rec[cnt++] = i;
}
}
}
int main() {
int T;
scanf("%d", &T);
while (T--) {
init();
input();
solve();
if (!cnt) printf("-1");
else {
printf("%d", rec[0] - 1);
for (int i = 1; i < cnt; i++) {
printf(" %d", rec[i] - 1);
}
}puts("");
}
return 0;
}