opencv利用投影法进行水平切割和垂直切割

本文介绍了如何使用OpenCV的投影法进行图像处理,包括水平投影切割和垂直投影切割。通过示例展示了原图、投影图及最终的切割结果,详细解析了投影法在图像分割中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

水平投影切割

#include<iostream>
#include <opencv2/opencv.hpp>  
using namespace std;
using namespace cv;
int main()
{
    IplImage * src = cvLoadImage("img1.jpg");
    IplImage *dst = cvCreateImage(cvGetSize(src), src->depth, src->nChannels);
    IplImage *img = cvCreateImage(cvGetSize(src), src->depth, src->nChannels);
    cvThreshold(src, dst, 100, 255, CV_THRESH_BINARY);
    IplImage* painty = cvCreateImage(cvGetSize(dst), IPL_DEPTH_8U, 1);
    cvZero(painty);
    int* h = new int[dst->height];
    memset(h, 0, dst->height * 4);
    int x, y;
    CvScalar s, t;//可以用来存放4个double数值的数组,一般用来存放像素值(不一定是灰度值哦)的,最多可以存放4个通道的 

    for (y = 0; y<dst->height; y++)
    {
        for (x = 0; x<dst->width; x++)
        {
            s = cvGet2D(dst, y, x);

            if (s.val[0] == 0)
                h[y]++;
        }
    }
    for (y = 0; y<dst->height; y++)
    {
        for (x = 0; x<h[y]; x++)
        {
            t.val[0] = 255;
            cvSet2D(painty, y, x, t);

        }
    }

    vector<Mat> roiList;//用于储存分割出来的每个字符
    int startIndex = 0;//记录进入字符区的索引
    int endIndex = 0;//记录进入空白区域的索引
    bool inBlock = false;//是否遍历到了字符区内
<think>好的,我需要帮助用户使用OpenCV实现汉字日文的OCR字符识别。首先,用户的问题涉及汉字日文,这两者的字符结构比英文字母更复杂,所以传统的OCR方法可能不够准确。不过用户提到了参考引用中的内容,特别是引用[2]提到的OCR身份证识别流程,可能需要借鉴其中的步骤。 首先,我应该回顾OpenCV在OCR中的常规流程,比如图像预处理、文本检测、字符分割字符识别。对于汉字日文来说,字符种类多,结构复杂,可能需要更精细的图像处理更强大的分类模型。传统的模板匹配或者简单的特征提取(如HOG、SIFT)可能效果有限,尤其是在字符变形或字体变化的情况下。 接下来,用户提供的引用[1]提到可以处理图像的不同输入形式,比如numpy数组、字节文件或URL,这需要在代码中支持多种输入方式。但用户的主要问题是如何实现OCR,特别是针对复杂字符。 然后,我需要考虑使用OpenCV结合机器学习或深度学习模型。例如,使用OpenCV进行预处理,然后利用训练好的模型进行识别。引用[2]中提到的实战项目可能包含相关案例,比如身份证识别,这通常涉及汉字识别,可以借鉴其中的方法。 步骤可能包括: 1. 图像预处理:灰度化、二值化、去噪、校正等。使用OpenCV的函数如cv2.cvtColor、cv2.threshold、高斯模糊、形态学操作等。 2. 文本区域检测:可能需要使用轮廓检测(cv2.findContours)、边缘检测(Canny)或者基于深度学习的文本检测模型(如EAST)。 3. 字符分割:对于汉字日文,字符通常是等距排列,可能需要投影分析或者连通区域分析来分割单个字符。 4. 特征提取:传统方法如HOG、SIFT,或者使用深度学习特征。但考虑到字符复杂性,深度学习可能更有效。 5. 字符分类:训练一个分类模型,如SVM、随机森林,或者使用CNN。由于字符类别多(汉字日文可能有数千个),需要较大的数据集较深的网络。 但是,用户可能没有现成的模型,所以需要考虑如何训练或获取预训练模型。引用[2]提到的OpenCV实战项目可能提供了一些预训练模型或者数据集,特别是身份证识别,但日文可能需要另外的数据集。 此外,OpenCV本身可能不足以处理复杂的OCR任务,尤其是对于中文日文,可能需要结合其他库,如Tesseract,但用户明确要求使用OpenCV实现。因此,可能需要自己构建一个流程,或者利用OpenCV的DNN模块加载预训练的深度学习模型,如CRNN或基于CNN的模型。 可能的解决方案步骤: - 使用OpenCV进行图像预处理。 - 使用EAST模型进行文本检测(OpenCV的DNN支持)。 - 分割出文本行,然后进一步分割字符。 - 使用训练好的CNN模型进行字符识别,模型需支持汉字日文字符。 但是训练这样的模型需要大量标注数据,对于普通用户来说可能困难。因此,可能需要建议用户使用现有的OCR引擎,如Tesseract,并训练其语言模型,或者结合OpenCV进行预处理后调用这些引擎。不过用户坚持使用OpenCV,可能需要寻找OpenCV与深度学习模型结合的方法。 总结思路: 1. 预处理图像,增强文本区域。 2. 检测文本区域并分割字符。 3. 使用深度学习模型识别字符,模型需支持多语言。 4. 可能需要用户自行训练模型或使用预训练模型。 在代码示例中,可以展示预处理轮廓检测的部分,但字符识别部分可能需要依赖训练好的模型文件。例如,使用OpenCV的dnn.readNetFromTensorflow加载一个训练好的CNN模型。 另外,用户的问题中提到汉字日文,需要注意字符编码模型的支持范围。比如,模型需要覆盖所有需要的字符类别,这可能需要非常大的分类层。 最后,生成相关问题时要围绕实现步骤、优化方法、数据集准备等。</think>使用OpenCV实现汉字与日文OCR字符识别需要结合传统图像处理技术机器学习方法,下面是分步实现方案: ### 一、核心步骤 1. **图像预处理** - 灰度化:$cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)$ - 二值化:$cv2.threshold(gray, 127, 255, cv2.THRESH_OTSU)$ - 去噪:$cv2.fastNlMeansDenoising()$ - 文本区域增强:直方图均衡化或CLAHE算法[^1] 2. **文本检测与定位** - 使用轮廓检测:$contours, _ = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)$ - 或使用深度学习模型(如EAST文本检测器):需加载预训练的.pb模型文件[^2] 3. **字符分割** - 投影分析:垂直投影切割单个字符 - 连通域分析:$cv2.connectedComponentsWithStats()$ ```python # 示例:垂直投影分割 vertical_projection = np.sum(binary_img, axis=0) char_positions = np.where(vertical_projection > threshold)[0] ``` 4. **特征提取与识别** - 传统方法:提取HOG特征 + SVM分类器 - 深度学习方法: ```python # 加载预训练CNN模型 net = cv2.dnn.readNetFromTensorflow("ocr_model.pb") blob = cv2.dnn.blobFromImage(char_img, scalefactor=1/127.5, size=(32,32)) net.setInput(blob) preds = net.forward() ``` ### 二、关键问题解决方案 1. **字符集覆盖** 汉字日文联合字符集超过2万个,需使用支持大类别分类的深度学习模型。建议采用CRNN(卷积循环神经网络)结构,参考身份证识别中的汉字处理方法[^2]。 2. **训练数据准备** - 中文数据集:CASIA-HWDB手写数据库 - 日文数据集:ETL字符数据库 - 数据增强:旋转(±10°)、平移、弹性变形 ### 三、完整代码示例 ```python import cv2 import numpy as np def ocr_jp_cn(image): # 预处理 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) _, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_OTSU + cv2.THRESH_BINARY_INV) # 文本检测(示例使用轮廓法) contours, _ = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # 加载预训练模型 net = cv2.dnn.readNetFromTensorflow("crnn_model.pb") results = [] for cnt in contours: x,y,w,h = cv2.boundingRect(cnt) char_img = binary[y:y+h, x:x+w] # 输入标准化 resized = cv2.resize(char_img, (32,32)) blob = cv2.dnn.blobFromImage(resized, scalefactor=1/127.5) # 推理 net.setInput(blob) preds = net.forward() char_code = np.argmax(preds) results.append(decode_char(char_code)) # 自定义解码函数 return "".join(results) ``` ### 四、优化建议 1. **模型选择** 优先选用CRNN等支持序列识别的模型,避免单个字符切割不准确的问题[^2] 2. **多语言支持** 合并中文字符集(GB2312日文JIS标准字符集,需重新训练分类层 3. **性能提升** - 使用OpenCL加速:$cv2.ocl.setUseOpenCL(True)$ - 批量推理:将多个字符图像合并为一个batch输入
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值