回溯算法基本思想:
回溯法(探索与回溯法)是一种选优搜索法,又称为试探法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。
八皇后问题:
是回溯算法的典型案例。该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。
问题分析:
1. 由算法基本思想及问题描述可知,首先我们可以先试探的走出一步,即在第一行进行皇后摆放,因不可同行摆放,故此情况下,有size种摆法,且每种可能同时决定下一行皇后的不同摆放位置;
2. 因不同列,因不同斜线,所以第二行的摆放机会将减少两到三个(同列,同斜线),但因为上行的随机性则需要从首列开始判定,若符合条件则放置皇后,若不符合跳过继续寻找;
3. 依次列推,直到行变量为size结束;
4. 由以上分析,可见每行的工作相似,即可使用递归实现;
5. 所需数据结构:size元素一维数组记录每行皇后的列位置;
代码展示:
#include <iostream>
#include <math.h>
using namespace std;
//此数组记录每次探索成功皇后在i行的位置
int A[15] = {0};
//模拟的皇后摆放位置
void print(int size)
{
for (int i(0); i < size; ++i)
{
for (int j(0); j < size; ++j)
{
if (A[i] == j)
cout << 1 << " ";
else
cout << 0 << " ";
}
cout << endl;
}
cout << endl;
}
//判断皇后在row行col列是否可摆放
int canplace(int row, int col)
{
int flag = 1;//默认此位置可放置
for (int i(0); i < row; ++i)
{
//如果在同列A[i]= col
//如果在同斜线abs(i - row) == abs(A[i] - col)
//因为属于正方形棋盘,故斜线方程为Y=X,故是否同斜线的条件为行距=列距
if (A[i] == col || abs(i - row) == abs(A[i] - col))
{
//则不可放置,标记置零
flag = 0;
break;
}
}
//返回此位置是否可用
return flag;
}
//皇后的放置函数
void queen(int n, int size)
{
//如果结束,输出结果
if (n == size)
print(size);
else
{
// 每行都需要从第一列开始试探
for (int i(0); i < size; ++i)
{
//如果当前行的i列能够放置
if (canplace(n, i))
{
//记录位置到解数组中
A[n] = i;
//继续下一行的探索
queen(n + 1, size);
}//end if
}//end for
}//end else
}
int main()
{
int size = 0;
cin >> size;
//从第0行开始探索
queen(0, size);
return 0;
}