回溯算法—N皇后问题

回溯算法基本思想:
回溯法(探索与回溯法)是一种选优搜索法,又称为试探法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。
八皇后问题:
是回溯算法的典型案例。该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。

问题分析:
1. 由算法基本思想及问题描述可知,首先我们可以先试探的走出一步,即在第一行进行皇后摆放,因不可同行摆放,故此情况下,有size种摆法,且每种可能同时决定下一行皇后的不同摆放位置;
2. 因不同列,因不同斜线,所以第二行的摆放机会将减少两到三个(同列,同斜线),但因为上行的随机性则需要从首列开始判定,若符合条件则放置皇后,若不符合跳过继续寻找;
3. 依次列推,直到行变量为size结束;
4. 由以上分析,可见每行的工作相似,即可使用递归实现;
5. 所需数据结构:size元素一维数组记录每行皇后的列位置;

代码展示:

#include <iostream>
#include <math.h>
using namespace std;

//此数组记录每次探索成功皇后在i行的位置
int A[15] = {0};

//模拟的皇后摆放位置
void print(int size)
{
    for (int i(0); i < size; ++i)
    {
        for (int j(0); j < size; ++j)
        {
            if (A[i] == j)
                cout << 1 << " ";
            else
                cout << 0 << " ";
        }
        cout << endl;
    }
    cout << endl;
}
//判断皇后在row行col列是否可摆放
int canplace(int row, int col)
{
    int flag = 1;//默认此位置可放置

    for (int i(0); i < row; ++i)
    {
        //如果在同列A[i]= col
        //如果在同斜线abs(i - row) == abs(A[i] - col)
        //因为属于正方形棋盘,故斜线方程为Y=X,故是否同斜线的条件为行距=列距
        if (A[i] == col || abs(i - row) == abs(A[i] - col))
        {
            //则不可放置,标记置零
            flag = 0;
            break;
        }
    }
    //返回此位置是否可用
    return flag;
}
//皇后的放置函数
void queen(int n, int size)
{
    //如果结束,输出结果
    if (n == size)
        print(size);
    else
    {
        // 每行都需要从第一列开始试探
        for (int i(0); i < size; ++i)
        {
           //如果当前行的i列能够放置
            if (canplace(n, i))
            {
                //记录位置到解数组中
                A[n] = i;
                //继续下一行的探索
                queen(n + 1, size);

            }//end if
        }//end for
    }//end else
}

int main()
{
    int size = 0;
    cin >> size;

    //从第0行开始探索
    queen(0, size);

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值