卷积神经网络(CNN)介绍09-BN层

本文介绍了深度学习中Batch Normalization(BN)层的作用,解释了为什么深度网络需要BN来应对Internal Covariate Shift问题。BN层通过归一化每一层的输出,使得网络可以使用更高学习率,减少过拟合,替代局部响应归一化,并缓解梯度消失问题。BN的基本原理是保持数据分布的一致性,同时允许网络学习到有效的特征表示。
摘要由CSDN通过智能技术生成

BN层

BN —- Batch Normalization

详情见论文《Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift》

文章暂未更完。。。。。。

为什么深度网络会需要batchnorm?

我们都知道,深度学习的话尤其是在CV上都需要对数据做归一化,因为深度神经网络主要就是为了学习训练数据的分布,并在测试集上达到很好的泛化效果,但是,如果我们每一个batch输入的数据都具有不同的分布,显然会给网络的训练带来困难。另一方面,数据经过一层层网络计算后,其数据分布也在发生着变化,此现象称为Internal Covariate Shift.(下面解释)

Batch Normalizatoin 之前的解决方案就是使用较小的学习率,和小心的初始化参数,对数据做白化处理,但是显然治标不治本。

BN层的优势

  1. 可以使用更高的学习率。如果每层的scale不一致,实际上每层需要的学习率是不一样的,同一层不同维度的scale往往也需要不同大小的学习率,通常需要使用最小的那个学习率才能保证损失函数有效下降,Batch Normalization将每层、每维的scale保持一致,那么我们就可以直接使用较高的学习率进行优化。

    以前还需要慢慢调整学习率&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值