C. Two Arrays
You are given two integers n
and m. Calculate the number of pairs of arrays (a,b)
such that:
the length of both arrays is equal to m;
each element of each array is an integer between 1 and n(inclusive);
ai≤bi for any index i from 1 to m;
array a is sorted in non-descending order;
array b is sorted in non-ascending order.
As the result can be very large, you should print it modulo 109+7
.
Input
The only line contains two integers n and m (1≤n≤1000, 1≤m≤10
).
Output
Print one integer – the number of arrays a and b satisfying the conditions described above modulo 109+7
.
Examples
Input
Copy
2 2
Output
Copy
5
Input
10 1
Output
55
Input
723 9
Output
157557417
Note
In the first test there are 5
suitable arrays:
a=[1,1],b=[2,2];
a=[1,2],b=[2,2];
a=[2,2],b=[2,2];
a=[1,1],b=[2,1];
a=[1,1],b=[1,1].
dp[n][m]为满足长度为m, 最后一位最大为n的不下降序列的个数。
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int maxn = 1e4 + 10;
const int mod = 1e9 + 7;
typedef long long ll;
ll dp[20][maxn];
int main() {
int n, m;
cin >> n >> m;
for(int i = 1; i <= n; i++) {
dp[1][i] = i;
}
for(int i = 2; i <= m; i++) {
for(int j = 1; j <= n; j++) {
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
dp[i][j] %= mod;
}
}
// for(int i = 1; i <= n; i++) {
// cout << dp[m][i] << endl;
// }
// cout << dp[m][n] << endl;
ll ans = 0;
for(int i = 1; i <= n; i++) {
ans += dp[m][i] * (dp[m][n - i + 1] - dp[m][n - i]) % mod;
ans %= mod;
}
cout << ans << endl;
return 0;
}
更新另一种写法, 在原来dp的基础上, 把m即长度扩大为原来的二倍, 这样dp[m][n]就是答案, 因为a的最大值小于等于b的最小值, 把b数组反转, 可通过一次dp求出答案。
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int maxn = 1e4 + 10;
const int mod = 1e9 + 7;
typedef long long ll;
ll dp[50][maxn];
int main() {
int n, m;
cin >> n >> m;
for(int i = 1; i <= n; i++) {
dp[1][i] = i;
}
m *= 2;
for(int i = 2; i <= m; i++) {
for(int j = 1; j <= n; j++) {
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
dp[i][j] %= mod;
}
}
ll ans = 0;
ans = dp[m][n];
cout << ans << endl;
return 0;
}