[论文笔记-5]Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction

题目、作者

论文、代码地址:https://aclanthology.org/2021.acl-long.367/ 

----------------------------------------------------------------------------------------------------------

阅读本篇文章之前,先简单介绍一下span与token!

 span(片段):有一个起始位置和结束位置,长度可以任意改变。

----------------------------------------------------------------------------------------------------------

Abstract

1. 以往:每个目标与观点之间(word-to-word)的交互,不能很好地完成包含多个单词的目标和意见的任务;

   本文:整个目标片段与观点片段之间(span-to-span)的交互(也可以单个单词的方面词或意见词),从而可以进行全片段的语义预测。

ps:目标→aspect

2. 我们的框架同时实现了ASTE、ATE和OTE任务的强大性能。

一、Introduction

1. ASTE任务介绍:上图是情感三元组的介绍,其中Windows 8与touchscreen functions是两个方面词(片段),not enjoy是opinion,是对于方面词的主观陈述

2. contribution:

① 定制了一种片段级(span-level)方法,以考虑用于ASTE任务的span-to-span交互。

② 本文提出了一种结合ATE(aspect terms extraction)和OTE(opinion terms extraction)任务的显式监督的双通道片段剪枝策略,以降低片段枚举带来的高计算成本,并最大限度地将有效的目标候选和意见候选结合在一起。【后面会细说】

③ 我们提出的Span-ASTE模型在四个数据集上进行实验,在ASTE、ATE和OTE任务上都显著优于之前的方法(与同样使用BiLSTM和BERT的工作进行比较)。

二、model

模型总览:句子首先被输入到句子编码模块,以获得token级表示,接下来我们通过concat操作和枚举的方法,得到片段级表示;然后我们采用基于ATE和OTE任务的前馈神经网络来监督我们所提出的双通道片段剪枝策略,从而得到剪枝后的候选目标(aspect)和候选意见;最后,对每个候选目标和候选意见进行concat,得到目标-意见对,通过该目标意见对决定他们的情感关系。

2.1 sentence encoding

Contextual Encoding:分别使用BiLSTM和Bert作为encoder。对于BiLSTM,首先通过GloVe(捕捉单词间的语义特征)得到句子的embedding,再通过双向LSTM得到句子的上下文表示。

公式(1):双向LSTM的第i个token表示,hi→和hi←分别代表LSTM的forward和backward的隐藏状态

Span Representation:有两种方式。第一种表达方式是如公式2所示,将start token,end token,width representations三者concat起来作为片段表示;第二种表达方式是将从位置i到位置j的一整个片段的token通过最大池化或平均池化,得到片段表示。方式二见消融实验

公式(2):片段级表示。分别代表片段span的:起始表示;终点表示;(产生一个)可训练特征的embedding,表示片段的宽度(每个片段的宽度是j-i+1)

2.2 mention module

ATE&OTE:通过预测目标(aspect)片段和意见(opinion)的得分来指导双通道片段剪枝,具体来说就是将每个枚举片段si,j作为输入,预测提及类型{Target,Opinion, Invalid}

公式(3):将每个枚举片段si,j输入到(带有非线性激活函数的)前馈神经网络中,再经过softmax计算出该枚举片段的前提下,m是目标/意见/不合法的概率

Pruned Target and Opinion/双通道剪枝策略:不光剪掉了invalid的片段,还剪掉了概率(分数)较低的target和opinion片段

公式(4):将公式(3)中的target和opinion概率看做评分,从所有枚举片段中挑选出最优秀的,也就是评分最高的目标候选和意见候选,分别把他们放入两个独立的目标候选池和意见候选池中 (目标候选和意见候选片段个数都是nz,其中n是句子长度,z是阈值超参数) 

【与contribution第二点呼应】剪枝→降低计算成本;剪枝+双通道(将目标候选和意见候选放入两个独立的候选池中)→最大限度将有效的目标候选和意见候选结合在一起

2.3 triplet module

Target Opinion Pair Representation:将每个目标候选表示和每个意见候选表示concat起来,得到目标-意见对表示。

公式(5):目标、意见片段对表示。其中,f可以产生一个基于距离的可训练特征embedding,距离的计算公式是min(|b − c|, |a − d|),例如候选目标片段的起始位置和终点位置为1、3,候选意见片段的起始位置是5、10,即a、b、c、d=1,3,5,10,那么这两个片段之间的距离为min(|3 − 5|, |1 − 10|)=2

Sentiment Relation Classifier、公式(6):最后,将目标、意见对表示输入到一个前馈神经网络,来确定候选目标片段和候选意见片段之间情感关系 此处,无效表示目标和意见对没有有效的情感关系

Loss:

即ATE、OTE任务损失+ASTE任务损失。

三、experiment

1. dataset:

 2. 对比实验:

3. 验证ATE、OTE任务有效性实验: 

 注:GTS是之前工作的最好结果

ATE、OTE性能高的原因:不依赖于基于标签的方法的解码启发式,而是考虑了每个片段的语义,提高了目标词和观点词的提取。

4. 消融实验 :

解读:

第一行:去掉片段表示(公式2)中的宽度embedding和目标-意见对表示(公式5)中的片段距离embedding

第二、三行:第二种片段表示方法——将从位置i(片段其实位置)到位置j(片段结束位置)之间的一整段片段通过最大、平均池化得到的片段表示。

四、结论

【与contribution差不多,可以略读】

1.我们提出了一种跨级方法Span-ASTE来学习ASTE任务的目标范围和意见范围之间的交互。它可以解决现有方法也就是只考虑字对字的交互的局限性。

2.我们还提出在双通道剪枝策略中加入ATE和OTE任务作为监督,以减少枚举目标候选和意见候选的数量,提高计算效率,并最大限度地提高有效目标候选和意见候选配对的机会。

3.我们的方法明显优于之前的ASTE以及ATE和OTE任务的方法,我们的分析证明了我们的方法的有效性。

 

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
人工智能的社会影响和风险及其对风险评估和治理的影响的研究往往分为两个集群,在时间范围和预期影响规模上分开。 自人工智能的早期发展以来,人们一直在强烈猜测可能出现比人类更强大的通用智能,例如高级通用智能 (AGI)、超级智能或人工智能奇点。 最近,随着具有重大影响的实际应用程序激增,注意力已转移到当前和立即预期的风险上,例如公平和偏见、隐私、自主和操纵、正当程序和其他问题。 然而,在这两者之间存在一个具有中期影响的区域——人工智能可能通过极大地重新配置能力、信息和行为来改变人类和社会,同时仍然(大部分)处于人类控制之下——受到的关注要少得多。 这些中期影响可能是最重要的,就潜在社会破坏的可能性和程度以及通过预期React影响这些的能力而言。 但与有可观察记录的直接影响相反; 以及终结点或奇点问题,这些问题可以基于规定的技术特征进行演绎推理,这些特征被假定在影响影响的任何社会或政治条件中占主导地位; 这一中程对评估和响应规划提出了严峻挑战,可用的有希望的工具或方法很少。 我们提出并开始开发一种评估这些中期影响的方法,重点关注其决策影响人工智能系统开发和应用的参与者; 他们的兴趣、能力和信息; 以及影响他们决策的战略互动。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值