线性规划基本概念

线性规划基本概念

线性规划标准型

m i n i m i z e c T x s u b j e c t t o A x = b x ≥ 0 \begin{aligned} minimize & \qquad \boldsymbol c^T \boldsymbol x \\ subject\quad to&\qquad \boldsymbol A \boldsymbol x= \boldsymbol b \\ &\qquad \boldsymbol x \geq \boldsymbol 0 \end{aligned} minimizesubjecttocTxAx=bx0

其中, A \boldsymbol A A m × n m\times n m×n实数矩阵, m < n m<n m<n, r a n k A = m {\rm rank}\boldsymbol A=m rankA=m. 不失一般性,假设 b ≥ 0 \boldsymbol b \geq \boldsymbol 0 b0.

任何形式的线性规划问题都可以转换为标准型。

基本解

A \boldsymbol A A中选择 m m m个线性无关的列向量组成方阵 B \boldsymbol B B,对 A \boldsymbol A A的列向量进行重新排序,可使得 B B B中的列向量位于 A \boldsymbol A A中的前 m m m列,即 A A A可写为分块矩阵 A = [ B , D ] \boldsymbol A=[\boldsymbol B,\boldsymbol D] A=[B,D],其中 D \boldsymbol D D m × ( n − m ) m\times (n-m) m×(nm)矩阵,它由 A \boldsymbol A A中其余的列向量组成。矩阵 B \boldsymbol B B是非奇异的,因此,可求得方程 B x B = b \boldsymbol B\boldsymbol x_B=\boldsymbol b BxB=b的解 x B \boldsymbol x_B xB。令 x \boldsymbol x x n n n维向量,且 x = [ x B T , 0 T ] T \boldsymbol x=[\boldsymbol x^T_B,\boldsymbol 0^T]^T x=[xBT,0T]T。那么 x \boldsymbol x x是方程 A x = b \boldsymbol A\boldsymbol x=\boldsymbol b Ax=b的一个解。
x = [ x B T , 0 T ] T \boldsymbol x=[\boldsymbol x^T_B,\boldsymbol 0^T]^T x=[xBT,0T]T A x = b \boldsymbol A\boldsymbol x=\boldsymbol b Ax=b在基 B \boldsymbol B B下的基本解,向量 x B \boldsymbol x_B xB中的元素成为基变量 B \boldsymbol B B中的列向量称为基本列向量。
如果基本解中的某些基变量为零,那么这个基本解称为退化基本解
满足 A x = b , x ≥ 0 \boldsymbol A\boldsymbol x=\boldsymbol b,\boldsymbol x \geq \boldsymbol 0 Ax=b,x0的向量 x \boldsymbol x x称为可行解
如果某个可行解也是基本解,那么称之为基本可行解
如果基本可行解是退化的基本解,那么称之为退化的基本可行解

线性规划基本定理

对于任何满足约束条件 A x = b , x ≥ 0 \boldsymbol A\boldsymbol x=\boldsymbol b,\boldsymbol x \geq \boldsymbol 0 Ax=b,x0的向量 x \boldsymbol x x,如果它能够使目标函数 C T x \boldsymbol C^T\boldsymbol x CTx取得最小值,那么就将其称为最优可行解。如果最优可行解是基本解,那么称为最优基本可行解
线性规划定理:对于线性规划的标准型,有如下两个命题。

  1. 如果存在可行解,那么一定存在基本可行解;
  2. 如果存在最优可行解,那么一定存在最优基本可行解;
约束集的极点与基本可行解等价

对任何 x , y ∈ Θ \boldsymbol x,\boldsymbol y\in \Theta x,yΘ和任意实数 α , 0 < α < 1 \alpha, 0<\alpha <1 α,0<α<1, 如果有 α x + ( 1 − α ) y ∈ Θ \alpha \boldsymbol x+(1-\alpha)\boldsymbol y\in \Theta αx+(1α)yΘ成立,则称集合 Θ n \mathbb{\Theta}^n Θn凸集

满足约束条件 A x = b , x ≥ 0 \boldsymbol A\boldsymbol x=\boldsymbol b,\boldsymbol x \geq \boldsymbol 0 Ax=b,x0的点集是凸集。

对于凸集 Θ \Theta Θ内的点 x \boldsymbol x x,如果在 Θ \Theta Θ中找不到两个不同的点 x 1 \boldsymbol x_1 x1 x 2 \boldsymbol x_2 x2,对于某个 α ∈ ( 0 , 1 ) \alpha\in (0,1) α(0,1),使得 x = α x 1 + ( 1 + α ) x 2 \boldsymbol x=\alpha \boldsymbol x_1 + (1+\alpha)\boldsymbol x_2 x=αx1+(1+α)x2成立,则称 x \boldsymbol x x Θ \Theta Θ的极点。

Ω \Omega Ω表示由所有可行解组成的凸集,即集合中的所有 n n n维向量 x x x满足 A x = b , x ≥ 0 \boldsymbol A \boldsymbol x= \boldsymbol b,\qquad \boldsymbol x \geq \boldsymbol 0 Ax=b,x0其中, A ∈ R m × n , m < n A \in \mathbb{R}^{m\times n}, m<n ARm×n,m<n。那么, x x x Ω \Omega Ω的极点当且仅当 x x x A x = b , x ≥ 0 \boldsymbol A\boldsymbol x=\boldsymbol b,\boldsymbol x\geq \boldsymbol 0 Ax=b,x0的基本可行解。

参考文献

[1]. Chong E K P , Stanislaw H. Żak. An Introduction to Optimization[J]. IEEE Antennas and Propagation Magazine, 1996, 38(2):60.

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值