【线性规划】基本概念

线性规划的概念

线性规划(Linear Programming 简记 LP)是了运筹学中数学规划的一个重要分支。自从 1947 年 G. B. Dantzig 提出 求解线性规划的单纯形法以来,线性规划在理论上趋向成熟,在实用中由于计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划现代管理中经常采用的基本方法之一。 在解决实际问题时,需要把问题归结成一个线性规划数学模型,关键及难点在于选适当的决策变量建立恰当的模型,这直接影响到问题的求解。
线性规划问题的目标函数及约束条件均为线性函数;约束条件记为 s.t.(即 subject to)。目标函数可以是求最大值,也可以是求最小值,约束条件的不等号可以 是小于号也可以是大于号。

一般线性规划问题的(数学)标准型为
在这里插入图片描述

线性规划问题解相关概念

可行解

满足约束条件(2)的解x=(x1,x2…xn) 称为线性规划问题的可行解, 而使目标函数(1)达到最大值的可行解叫最优解。

可行域

所有可行解构成的集合称为问题的可行域,记为R 。

图解法

适用于二维决策变量,它有助于了解线性规划问题求解的基本原理。对于每一固定的值z,使目标函数值等于z的点构成的直线称为目标函数等位线,当z变动时,我们得到一族平行直线。

推广到多维空间的线性规划:超平面、多胞形、多面体

以下结论可以推广到一般的线性规划问题,区别只在于空间的维数:
(1)可行域R 可能会出现多种情况。R 可能是空集也可能是非空集合,当R 非空 时,它必定是若干个半平面的交集(除非遇到空间维数的退化) 。R 既可能是有界区域, 也可能是无界区域。

(2)在R 非空时,线性规划既可以存在有限最优解,也可以不存在有限最优解(其 目标函数值无界)。

(3)若线性规划存在有限最优解,则必可找到具有最优目标函数值的可行域R 的 “顶点” 。
在一般的n维 空间中,满足线性等式 在这里插入图片描述
的点集被称为一个超平面。
在这里插入图片描述
或者在这里插入图片描述
的点集被称为一个半空间,其中(a1,a2…an)为一个n维行向量,b为一个实数.若干个半空间的交集被称为多胞形,有界的多胞形又被称为多面体。易见,线性规划的可行域必为多胞形(为统一起见,空集Φ也被视为多胞形)。 在一般n维空间中,要直接得出多胞形“顶点”概念还有一些困难。二维空间中的顶点可以看成为边界直线的交点,但这一几何概念的推广在一般n维空间中的几何意义并不十分直观。为此,我们将采用另一途径来定义它。
单纯形法是求解线性规划问题的最常用、最有效的算法之一.

单纯形法

准备知识:
对于 A x = b , A : m ∗ n , x : n ∗ 1 , b : n ∗ 1,可以写成下列形式:
在这里插入图片描述
也就是说 b是A的列向量的线性组合,线性组合的系数就是 A x = b方程组的一个解。
单纯形法的基本想法是从线性规划可行集的某一个顶点出发,沿着使目标函数值下降的方向寻求下一个顶点,面顶点个数是有限的,所以,只要这个线性规划有最优解,那么通过有限步选代后,必可求出最优解。

单纯形法的一般解题步骤可归纳如下:

(1)把线性规划问题的约束方程组表达成典范型方程组,找出基本可行解作为初始基本可行解
(2)若基本可行解不存在,即约束条件有矛盾,则问题无解
(3)若基本可行解存在,以初始基本可行解作为起点,根据最优性条件和可行性条件,引入非基变量取代某一基变量,找出目标函数值更优的另一基本可行解
(4)按步骤3进行迭代,直到对应检验数满足最优性条件(这时目标函数值不能再改善),即得到问题的最优解
(5)若迭代过程中发现问题的目标函数值无界,则终止迭代。

  • 0
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值