极大似然估计

极大似然估计

极大似然估计

极大似然的思想来自于统计学界中频率主义学派(Frequentist),该学派认为参数虽然未知, 但却是客观存在的固定值。极大似然估计的做法是:根据已经存在的观测结果,得到观测结果的似然函数(出现观测结果的概率的表达式) L ( Y ∣ θ ) L(Y|\theta) L(Yθ)。其中 Y Y Y表示观测序列, θ \theta θ表示要估计的参数。

举个抛硬币的例子:假设一枚硬币抛出后, 正面朝上的概率是 p p p, 现进行8次试验, 若正面朝上记为 1 1 1,反面朝上记为 0 0 0, 观测结果为 Y = ( 10110011 ) Y=(10110011) Y=(10110011)。 求 p p p

出现上述试验结果的概率可表示为: P ( Y ∣ p ) = p 5 ( 1 − p ) 3 P(Y|p) = p^5(1-p)^3 P(Yp)=p5(1p)3

所以参数 p p p对于观测结果 Y Y Y的似然函数为: L ( p ) = P ( Y ∣ p ) = p 5 ( 1 − p ) 3 L(p)=P(Y|p) = p^5(1-p)^3 L(p)=P(Yp)=p5(1p)3

通常, 为了方便进一步处理,会对似然函数取自然对数。既不影响其单调性,还能将式中的连乘和指数运算化简为加法和乘法。所以参数 p p p对于观测结果 Y Y Y的对数似然函数为: L L ( p ) = l o g ( P ( Y ∣ p ) ) = l o g ( p 5 ( 1 − p ) 3 ) LL(p)=log(P(Y|p)) = log(p^5(1-p)^3) LL(p)=log(P(Yp))=log(p5(1p)3)

此时,参数 p p p的极大似然估计 p ^ = arg ⁡ max ⁡ p L L ( p ) \hat{p} = \arg\max\limits_{p}LL(p) p^=argpmaxLL(p)

求得结果为 p = 5 8 p=\frac{5}{8} p=85, 与直观经验相符.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值