Part I. S1. 模糊集及其运算

1.1 模糊集定义

  设U为论域, μ A ~ \mu_{\tilde{A}} μA~是论域U到闭区间 [ 0 , 1 ] [0,1] [0,1]的一个映射,即

μ A ~ : U → [ 0 , 1 ] , u ↦ μ A ~ ( u ) ∈ [ 0 , 1 ] \mu_{\tilde{A}}:U\rightarrow[0,1],u\mapsto\mu_{\tilde{A}}(u)\in[0,1] μA~:U[0,1],uμA~(u)[0,1]
  则称此映射确定了U的一个模糊子集 A ~ \tilde{A} A~,称 μ A ~ \mu_{\tilde{A}} μA~ A ~ \tilde{A} A~的隶属函数, μ A ~ ( u ) \mu_{\tilde{A}}(u) μA~(u)称为对u A ~ \tilde{A} A~的隶属度。
  模糊子集也成为模糊集合。

  示例

一箱橘子共有6个橘子,其成熟度分别为 [ 0.5 , 0.7 , 0.8 , 0.8 , 0.5 , 0.6 ] [0.5,0.7,0.8,0.8,0.5,0.6] [0.5,0.7,0.8,0.8,0.5,0.6],则这里的成熟度即为每个橘子属于成熟橘子的隶属度


1.2 模糊集运算

  设 A ~ \tilde{A} A~ B ~ \tilde{B} B~为论域U上的两个模糊子集,则定义 A ~ \tilde{A} A~ B ~ \tilde{B} B~的交、并、补运算如下:
μ A ~ ∪ B ~ ( u ) = μ A ~ ( u ) ∨ μ B ~ ( u ) \mu_{\tilde{A}\cup\tilde{B}}(u)=\mu_{\tilde{A}}(u)\vee\mu_{\tilde{B}}(u) μA~B~(u)=μA~(u)μB~(u)
μ A ~ ∩ B ~ ( u ) = μ A ~ ( u ) ∧ μ B ~ ( u ) \mu_{\tilde{A}\cap\tilde{B}}(u)=\mu_{\tilde{A}}(u)\wedge\mu_{\tilde{B}}(u) μA~B~(u)=μA~(u)μB~(u)
μ A c ~ ( u ) = 1 − μ A ~ ( u ) \mu_{\tilde{A^c}}(u)=1-\mu_{\tilde{A}}(u) μAc~(u)=1μA~(u)
   A ~ ∪ B ~ \tilde{A}\cup\tilde{B} A~B~ A ~ ∩ B ~ \tilde{A}\cap\tilde{B} A~B~ A c ~ \tilde{A^c} Ac~分别称为 A ~ \tilde{A} A~ B ~ \tilde{B} B~的并集、交集和补集。

  式中,“ ∨ \vee ”表示取大运算,“ ∧ \wedge ”表示取小运算,称为Zadeh算子。当论域有限时,“ ∨ \vee ”与“ ∧ \wedge ”分别表示取最大值和最小值;当论域无限时,分别表示取上、下确界。

  示例

一箱橘子共有6个橘子,分别按照1-6进行编号。甲对各个橘子的成熟度评价结果为 A = [ 0.4 , 0.6 , 0.7 , 0.4 , 0.9 , 0.6 ] A = [0.4,0.6,0.7,0.4,0.9,0.6] A=[0.4,0.6,0.7,0.4,0.9,0.6],乙对各个橘子的成熟度评价结果为 B = [ 0.6 , 0.4 , 0.7 , 0.8 , 0.8 , 0.6 ] B = [0.6,0.4,0.7,0.8,0.8,0.6] B=[0.6,0.4,0.7,0.8,0.8,0.6]。从案例来看A与B或不包含也不相等。


1.3 模糊集的基本定理

定义1.4
  设 A ~ \tilde{A} A~是论域U上的一个模糊集,对应任一 λ ∈ [ 0 , 1 ] \lambda\in[0,1] λ[0,1],有:

(1) 若 ( A ) λ = A λ = { u ∣ μ A ~ ( u ) ≥ λ , u ∈ U } {(A)}_{\lambda}=A_{\lambda}=\left\{ u|\mu_{\tilde{A}}(u)\geq\lambda,u\in{U}\right\} (A)λ=Aλ={uμA~(u)λ,uU},则称 A λ A_{\lambda} Aλ A ~ \tilde{A} A~ λ \lambda λ水平截集, λ \lambda λ称为水平。

(2) 若 ( A ) λ + = A λ + = { u ∣ μ A ~ ( u ) > λ , u ∈ U } {(A)}_{\lambda+}=A_{\lambda+}=\left\{ u|\mu_{\tilde{A}}(u)\gt\lambda,u\in{U}\right\} (A)λ+=Aλ+={uμA~(u)>λ,uU},则称 A λ + A_{\lambda+} Aλ+ A ~ \tilde{A} A~ λ \lambda λ水平强截集。

定义1.5
  设 A ~ \tilde{A} A~是论域U上的一个模糊集, A 1 A_1 A1称为 A ~ \tilde{A} A~的核,记为 K e r A ~ Ker{\tilde{A}} KerA~ A 0 A_0 A0称为 A ~ \tilde{A} A~的支撑集,记为 S u p p A ~ Supp{\tilde{A}} SuppA~ A 0 − A 1 A_0-A_1 A0A1称为 A ~ {\tilde{A}} A~的边界。

定义1.6
  设 A ~ \tilde{A} A~是论域U上的一个模糊集, λ ∈ [ 0 , 1 ] \lambda\in[0,1] λ[0,1],则定义数 λ \lambda λ与模糊数 A ~ \tilde{A} A~的乘积 λ A ~ \lambda\tilde{A} λA~是模糊集合,其隶属函数为
( λ A ~ ) ( u ) = λ ∧ A ~ ( u ) (1.1) (\lambda\tilde{A})(u)=\lambda\wedge\tilde{A}(u)\tag{1.1} (λA~)(u)=λA~(u)(1.1)
  数 λ \lambda λ与模糊集 A ~ \tilde{A} A~的乘积 ( λ A ~ ) (\lambda\tilde{A}) (λA~)具有以下性质:

(1) 如果 λ 1 < λ 2 \lambda _1 \lt \lambda _2 λ1<λ2,则 λ 1 ∧ A ~ ⊆ λ 2 ∧ A ~ \lambda _1 \wedge \tilde {A} \subseteq \lambda _2 \wedge \tilde {A} λ1A~λ2A~

(2) 如果 A ~ 1 ⊆ A ~ 2 \tilde {A}_1\subseteq \tilde {A}_2 A~1A~2,则 λ ∧ A ~ 1 ⊆ λ ∧ A ~ 2 \lambda \wedge \tilde {A}_1 \subseteq \lambda \wedge \tilde {A}_2 λA~1λA~2

定理1.1 分解定理

  设 A ~ \tilde{A} A~是论域U上的一个模糊集, A λ A_\lambda Aλ A ~ \tilde{A} A~ λ \lambda λ水平截集, λ ∈ [ 0 , 1 ] \lambda \in [0,1] λ[0,1],则 A ~ = ⋃ λ ∈ [ 0 , 1 ] ( λ A λ ) \tilde{A}=\bigcup_{\lambda \in[0,1]} \left(\lambda A_ \lambda \right) A~=λ[0,1](λAλ)
  其中, λ A λ \lambda A_ \lambda λAλ是常数与普通集合的数量积。

定理1.2 扩张原理
  设UV是两个论域,映射 f : U → V f:U \rightarrow V f:UV。则由映射f可诱导出一个新的映射,仍记为f
f : F ( U ) → F ( V ) , A ~ ↦ f ( A ~ ) f:F(U) \rightarrow F(V), \tilde {A} \mapsto f(\tilde {A}) f:F(U)F(V),A~f(A~)
  其隶属函数为
f ( A ~ ( v ) = ∨ f ( u ) = v A ~ ( u ) (1.2) f(\tilde {A} (v)=\underset{f(u)=v}{\vee} \tilde {A} (u)\tag{1.2} f(A~(v)=f(u)=vA~(u)(1.2)
  此外,由映射f可诱导出另一个新的映射,记作 f − 1 f^{-1} f1
f − 1 : F ( V ) → F ( U ) , B ~ ↦ f − 1 ( B ~ ) f^{-1}:F(V) \rightarrow F(U), \tilde {B} \mapsto f^{-1} (\tilde{B}) f1:F(V)F(U),B~f1(B~)
  其隶属函数为
f − 1 ( B ~ ) ( u ) = B ~ ( f ( u ) ) (1.3) f^{-1} (\tilde {B}) (u) = \tilde {B} (f(u))\tag{1.3} f1(B~)(u)=B~(f(u))(1.3)
  称 f ( A ~ ) f(\tilde{A}) f(A~) A ~ \tilde{A} A~的镜像, f − 1 ( B ~ ) f^{-1}(\tilde{B}) f1(B~) B ~ \tilde{B} B~的原像。


特别说明:本专栏主要参考郭子雪等所著《直觉模糊多属性决策理论方法及应用研究》书籍,部分代码计算结果与书中有所出入,请仔细甄别!

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值