机器学习的范式包含但不限于以下几种:
三种主流范式:
- 监督学习(Supervised Learning)
监督学习模型主要是根据标注数据对模型的输入和输出学习到一种映射关系,以此对测试数据集中的样本进行预测。包含两类任务:分类和回归
- 无监督学习(Unsupervised Learning)
相比于监督学习,无监督学习仅依赖于无标签的数据训练模型来学习数据表征。主要任务包括:聚类、密度估计(学习输入数据的分布)、可视化(对数据简单进行统计或将高维数据映射到低维向量空间进行可视化)
- 强化学习(Reinforcement Learning)
强化学习强调如何基于环境而行动,以取得最大化的预期利益。与监督学习不同的是,强化学习不需要带标签的输入输出对,同时也无需对非最优解的精确地纠正。其关注点在于寻找探索(对未知领域的)和利用(对已有知识的)的平衡。Google的AlphaGo 是较为成功的强化学习案例。
一些主流的强化学习算法有:Q-learning、temporal-difference learning、deep reinforcement learning
混合学习范式
- 半监督学习(Semi-Supervised Learning)