高数 01.02数列的极限

 

一、数列极限的定义
二、收敛数列的性质
三、极限存在准则

 

引例。 rnA n S 

如图所示,可知

A n =nr 2 sin(πn )cos(πn )(n=3,4,5,) 

nA n Sε>0,Nn>N 
|A n S|<ε 

x n =f(n){x n }x n () 
    x n a 
    ε>0,Nn>N|x n a|<ε 
    {x n }a 

lim n+ x n =ax n a(n) 

     

例如:

12 ,23 ,34 ,,nn+1 ,x n =nn+1 1(n)2,12 ,43 ,34 ,,n+(1) n1 n ,x n =n+(1) (n1) n+1 1(n) ⎫ ⎭ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪  

2,4,8,,2 n ,x n =2 n (n)1,1,1,,(1) n+1 ,x n =(1) n+1  ⎫ ⎭ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ () 

例1. x n =n+(1) n n ,{x n }1. 
证: |x n 1|=|n+(1) n n 1|=1n  
ε>0,使|x n 1|<ε,1n <ε,n>1ε ,N=[1ε ],n>N,1n <1N , 

∣ ∣ n+(1) n n 1|<ε 

lim n x n =lim n n+(1) n n =1 

例2. x n =(1) n (n+1) 2  ,lim n x n =0. 
证: |x n 0|=∣ ∣ (1) n (n+1) 2  0∣ ∣ =1(n+1) 2  <1n+1  
ε(0,1),使|x n 0|<ε,1n+1 <ε,n>1ϵ 1.N=[1ε 1],n>N|x n 0|<ε, 

lim n x n =lim n (1) n (n+1) 2  =0 

例3. |q|<1,1,q,q 2 ,,q n1 ,0. 
证: |x n 0|=|q n1 0|=|q| n1  
ε(0,1),使|x n 0|<ε,|q| n1 <ε,(n1)ln|q|<lnε,n>1+lnεln|q| . 
N=[1+lnεln|q| ],n>N|q n1 0|<ε 

lim n q n1 =0 

 

1.收敛数列的极限唯一。
2.收敛数列一定有界。
3.收敛数列的保号性。
4.收敛数列的任一子数列收敛于同一个极限。

说明:由此性质可知,若数列有两个子数列收敛于不同的极限,则原数列一定发散。
例如,

x n =(1) n+1 (n=1,2,3,) 

lim k x 2k1 =1;lim k x 2k =1 

 

1.夹逼准则(准则1)(P49)

(1)y n x n z n (n=1,2,)(2)lim n y n =lim n z n =a }lim n x n =a 

证: (2)ε>0,N 1 ,N 2 , 
n>N 1 |y n a|<ε 
n>N 2 |z n a|<ε 
N=max{N 1 ,N 2 },n>N 
aε<y n <a+ε,aε<z n <a+ε, 
(1)aε<y n x n z n <a+ε 
|x n a|<ε,lim n x n =a. 

4.lim n n(1n 2 +π +1n 2 +2π ++1n 2 +nπ )=1 

证:利用夹逼准则.由
n 2 n 2 +nπ <n(1n 2 +π +1n 2 +2π ++1n 2 +nπ )<n 2 n 2 +π  

lim n n 2 n 2 +nπ =lim n 11+πn  =1lim n n 2 n 2 +π =lim n 11+πn 2   =1 

2.单调有界数列必有极限(准则2)(P52)
x 1 x 2 x n M 

lim n x n =a(M) 

x 1 x 2 x n x n+1 m 
lim n x n =b(m) 

5.x n =(1+1n ) n (n=1,2,),{x n }.P52 P54) 
证:利用二项式公式,有
x n  =(1+1n ) n =1+n1! 1n +n(n1)2! 1n 2  +n(n1)(n2)3! 1n 3  ++n(n1)(nn+1)n! 1n n  =1+1+12! (11n )+13! (11n )(12n )++1n! (11n )(12n )(1n1n ) 注释利用二项式公式展开把分母nn次方拆成nn相乘;再与分子各项分别除以n (1)(2)(3) 
x n+1 =1+1+12! (11n+1 )+13! (11n+1 )(12n+1 )++1(n+1)! (11n+1 )(12n+1 )(1nn+1 ) 

x n+1 x n  
比较可知 x n <x n+1 (n=1,2,) 
x n =(1+1n ) n <1+1+12! +13! ++1n! <1+1+12 +12 2  ++12 n1  =1+112 n  112  =312 n1  <3 
2{x n } 
记此极限为e,即

lim n (1+1n ) n =e 

e为无理数,其值为
e=2.718281828459045 

内容小结
1.εN 
2. 
3. 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值