线性代数 04.02 向量组的线性相关性

线性代数 专栏收录该内容
36 篇文章 4 订阅

§线 

 

(). 
m×nAnm. 
α j =⎛ ⎝ ⎜ ⎜ ⎜ ⎜ ⎜ a 1j a 2j a mj  ⎞ ⎠ ⎟ ⎟ ⎟ ⎟ ⎟ ,(j=1,2,,n) 
α 1 ,α 2 ,,α n A. 
m×nAmn. 
α T i =(a i1 ,a i2 ,,a in  ),(i=1,2,,m) 
α T 1 ,α T 2 ,,α T m A. 
,.: 
mnα 1 ,α 2 ,,α m n×m. 
A=(α 1 ,α 2 ,,α m  ); 
mnβ T 1 ,β T 2 ,,β T m m×n. 
B=⎛ ⎝ ⎜ ⎜ ⎜ ⎜ ⎜ β T 1 β T 2 β T m  ⎞ ⎠ ⎟ ⎟ ⎟ ⎟ ⎟ =⎛ ⎝ ⎜ ⎜ ⎜ a 11 a 21 a m1  a 12 a 22 a m2   a 1n a 2n a mn  ⎞ ⎠ ⎟ ⎟ ⎟  
线Ax=b,,. 
x 1 α 1 +x 2 α 2 ++x n α n =b, 
线广B=(A|b)α 1 ,α 2 ,,α m ,b. 

线 

3.A:α 1 ,α 2 ,,α m ,k 1 ,k 2 ,,k m ,k 1 α 1 +k 2 α 2 ++k m α m A线,k 1 ,k 2 ,,k m 线. 

线A:α 1 ,α 2 ,,α m b,λ 1 ,λ 2 ,,λ m ,使b=λ 1 α 1 +λ 2 α 2 ++λ m α m bA线,bA线. 

bA线,线x 1 α 1 +x 2 α 2 ++x m α m =b.3,: 
1.bA线A=(α 1 ,α 2 ,,α m )B=(α 1 ,α 2 ,,α m ,b). 

 

4.A:α 1 ,α 2 ,,α m B:b 1 ,b 2 ,,b s ,BA线,BA线.AB线,. 

ABA=(α 1 ,α 2 ,,α m )B=(b 1 ,b 2 ,,b s ),BA线,Bb j (j=1,2,,s)k 1j ,k 2j ,,k mj ,使b j =k 1j α 1 +k 2j α 2 ++k mj α m =(α 1 ,α 2 ,,α m  )⎛ ⎝ ⎜ ⎜ ⎜ ⎜ ⎜ k 1j k 2j k mj  ⎞ ⎠ ⎟ ⎟ ⎟ ⎟ ⎟ (b 1 ,b 2 ,,b s  )=(α 1 ,α 2 ,,α m  )⎛ ⎝ ⎜ ⎜ ⎜ ⎜ k 11 k 21 k m1  k 12 k 22 k m2   k 1s k 2s k ms  ⎞ ⎠ ⎟ ⎟ ⎟ ⎟  
K m×s =(k ij )线. 
,C m×n =A m×s B s×n ,CA线,B:(c 1 ,c 2 ,,c n  )=(α 1 ,α 2 ,,α s  )⎛ ⎝ ⎜ ⎜ ⎜ ⎜ b 11 b 21 b s1  b 12 b 22 b s2   b 1n b 2n b sn  ⎞ ⎠ ⎟ ⎟ ⎟ ⎟ ,CB线,A:⎛ ⎝ ⎜ ⎜ ⎜ ⎜ ⎜ γ T 1 γ T 2 γ T m  ⎞ ⎠ ⎟ ⎟ ⎟ ⎟ ⎟ =⎛ ⎝ ⎜ ⎜ ⎜ ⎜ a 11 a 21 a m1  a 12 a 22 a m2   a 1s a 2s a ms  ⎞ ⎠ ⎟ ⎟ ⎟ ⎟ ⎛ ⎝ ⎜ ⎜ ⎜ ⎜ ⎜ β T 1 β T 2 β T m  ⎞ ⎠ ⎟ ⎟ ⎟ ⎟ ⎟  

,AB,BA线,BA线.,BA,AB线.AB.,AB,AB. 
线. 

线 

5.A:α 1 ,α 2 ,,α m ,k 1 ,k 2 ,,k m ,使k 1 α 1 +k 2 α 2 ++k m α m =0A线,线. 
1)α线α=0. 
2)线. 
3)线. 
4)α线α0. 
5)线. 

1.线. 
1)α T 1 =(1,1,1),α T 2 =(0,2,5),α T 3 =(1,3,6) 
2)β T 1 =(1,0,0),β T 2 =(1,2,1),β T 3 =(1,0,1) 
:1)x 1 ,x 2 ,x 3 使x 1 α T 1 +x 2 α T 2 +x 3 α T =0(1)(x 1 +x 3 ,x 1 +2x 2 +3x 3 ,x 1 +5x 2 +6x 3 )=(0,0,0) 
⎧ ⎩ ⎨ ⎪ ⎪ x 1 +x 3 =0x 1 +2x 2 +3x 3 =0x 1 +5x 2 +6x 3 =0  
∣ ∣ ∣ ∣ 111 025 136 ∣ ∣ ∣ ∣ =0,,,x 1 ,x 2 ,x 3 使(1).α T 1 ,α T 2 ,α T 3 线. 
2)x 1 ,x 2 ,x 3 使x 1 β T 1 +x 2 β T 2 +x 3 β T 3 =0(2) 
⎧ ⎩ ⎨ ⎪ ⎪ x 1 +x 2 +x 3 =02x 2 =0x 2 +x 3 =0  
∣ ∣ ∣ ∣ 100 121 101 ∣ ∣ ∣ ∣ =20 
.x 1 ,x 2 ,x 3 (2).β T 1 ,β T 2 ,β T 3 线. 

线 

2.α 1 ,α 2 ,,α m (m2)线m1线. 
:,α m 线,α m =λ 1 α 1 +λ 2 α 2 ++λ m1 α m1 λ 1 α 1 +λ 2 α 2 ++λ m1 α m1 +(1)α m =0λ 1 ,λ 2 ,,λ m1 ,1m,α 1 ,α 2 ,,α m 线.,α 1 ,α 2 ,,α m 线,k 1 ,k 2 ,,k m 使k 1 α 1 +k 2 α 2 ++k m α m =0k 1 0,α 1 =k 2 k 1  α 2 k 3 k 1  α 3 k m k 1  α m α 1 m1线. 

2.α T =(a 1 ,a 2 ,,a n ),e T 1 =(1,0,,0),e T 2 =(0,1,,0),,e T n =(0,0,,1),线. 
:α T =a 1 e T 1 +a 2 e T 2 ++a n e T n 2,α T ,e T 1 ,e T 2 ,,e T n 线. 

3.α 1 ,α 2 ,,α m 线,α 1 ,α 2 ,,α m ,β线,βα 1 ,α 2 ,,α m 线,. 
:α 1 ,α 2 ,,α m ,β线,k 1 ,k 2 ,,k m ,k m+1 ,使k 1 α 1 +k 2 α 2 ++k m α m +k m+1 β=0βα 1 ,α 2 ,,α m 线,k m+1 0.,k m+1 =0,k 1 ,k 2 ,,k m ,k 1 α 1 +k 2 α 2 ++k m α m =0α 1 ,α 2 ,,α m 线,,.k m+1 0.β=k 1 k m+1  α 1 k 2 k m+2  α 2 k m k m+1  α m .:β=λ 1 α 1 +λ 2 α 2 ++λ m α m β=k 1 α 1 +k 2 α 2 ++k m α m ,(λ 1 k 1 )α 1 +(λ 2 k 2 )α 2 ++(λ m k m )α m =0α 1 ,α 2 ,,α m 线,λ i k i =0,λ i =k i (i=1,2,,m).. 

  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报