线性代数——向量

系列文章目录


版权声明

本文大部分内容皆来自李永乐老师考研教材和视频课。

前言

在学习前注意以下几点:

  • 向量和向量组:分清楚向量和向量组,这一点至关重要。
  • 区分向量、向量组、矩阵和行列式以及它们混合时的写法:
    • ∣ a 11 a 12 … a 1 n a 21 a 22 … a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 … a n n ∣ ⇔ \begin{vmatrix}a_{11} &a_{12}&\ldots&a_{1n}\\a_{21} &a_{22}&\ldots&a_{2n}\\\vdots&\vdots&&\vdots\\a_{n1}&a_{n2}&\ldots&a_{nn}\end{vmatrix}\Leftrightarrow a11a21an1a12a22an2a1na2nann 行列式
    • [ a 1 a 2 … a n ] ⇔ \begin{bmatrix}a_1&a_2&\dots&a_n\end{bmatrix}\Leftrightarrow [a1a2an] 矩阵
    • ( a 1 , a 2 , … , a n ) ⇔ (a_1,a_2,\dots,a_n)\Leftrightarrow (a1,a2,,an) 向量
    • α 1 , α 2 , … , α n ⇔ \alpha_1,\alpha_2,\dots,\alpha_n\Leftrightarrow α1,α2,,αn 向量组
    • ∣ α 1 , α 2 , … , α n ∣ ⇔ |\alpha_1,\alpha_2,\dots,\alpha_n|\Leftrightarrow α1,α2,,αn向量组行列式
    • [ α 1 , α 2 , … , α n ] ⇔ [\alpha_1,\alpha_2,\dots,\alpha_n]\Leftrightarrow [α1,α2,,αn]向量组矩阵

向量和向量组

n n n个数构成的有序集合称为 n n n向量,记为:
( a 1 , a 2 , … , a n ) ( 行向量 ) ( a 1 , a 2 , … , a n ) ( 列向量 ) T (a_1,a_2,\dots,a_n)_{(行向量)}\\ (a_1,a_2,\dots,a_n)^T_{(列向量)} (a1,a2,,an)(行向量)(a1,a2,,an)(列向量)T
其中 a i a_i ai称为向量的第 i i i分量 ( i = 1 , 2 , … , n ) (i=1,2,\dots,n) (i=1,2,,n),如果向量的所有分量都是 0 0 0,就称其为零向量,记作 O = ( 0 , 0 , … , 0 ) O=(0,0,\dots,0) O=(0,0,,0)

n n n维向量 α = ( a 1 , a 2 , … , a n ) , β = ( b 1 , b 2 , … , b n ) \alpha=(a_1,a_2,\dots,a_n),\beta=(b_1,b_2,\dots,b_n) α=(a1,a2,,an),β=(b1,b2,,bn),则:

  • α = β ⇔ a 1 = b 1 , a 2 = b 2 , … , a n = b n \alpha=\beta\Leftrightarrow a_1=b_1,a_2=b_2,\dots,a_n=b_n α=βa1=b1,a2=b2,,an=bn
  • 向量加法: α + β = ( a 1 + b 1 , a 2 + b 2 , … , a n + b n ) \alpha+\beta=(a_1+b_1,a_2+b_2,\dots,a_n+b_n) α+β=(a1+b1,a2+b2,,an+bn)
  • 数乘向量: k α = ( k a 1 , k a 2 , … , k a n ) k\alpha=(ka_1,ka_2,\dots,ka_n) kα=(ka1,ka2,,kan)

n n n m m m维向量组成的有序集合称为m维向量组

向量内积

α = ( a 1 , a 2 , … , a n ) T , β = ( b 1 , b 2 , … , b n ) T \alpha=(a_1,a_2,\dots,a_n)^T,\beta=(b_1,b_2,\dots,b_n)^T α=(a1,a2,,an)T,β=(b1,b2,,bn)T,令
( α , β ) = a 1 b 1 + a 2 b 2 , + ⋯ + a n b n (\alpha,\beta)=a_1b_1+a_2b_2,+\dots+a_nb_n (α,β)=a1b1+a2b2,++anbn
则称其为向量 α \alpha α β \beta β内积。如果 ( α , β ) = 0 (\alpha,\beta)=0 (α,β)=0,则称 α \alpha α β \beta β正交,记作
A ⊥ B A\perp B AB
向量 α \alpha α长度 ( α , α ) \sqrt{(\alpha,\alpha)} (α,α) ,记作
∣ ∣ α ∣ ∣ = ( α , α ) = a 1 2 + a 2 2 + ⋯ + a n 2 ||\alpha||=\sqrt{(\alpha,\alpha)}=\sqrt{a_1^2+a_2^2+\dots+a_n^2} ∣∣α∣∣=(α,α) =a12+a22++an2
长度为 1 1 1的向量称为单位向量。内积的性质如下:

  • ( α , β ) = ( β , α ) (\alpha,\beta)=(\beta,\alpha) (α,β)=(β,α)
  • ( α + β , γ ) = ( α , γ ) + ( β , γ ) (\alpha+\beta,\gamma)=(\alpha,\gamma)+(\beta,\gamma) (α+β,γ)=(α,γ)+(β,γ)
  • ( k α , β ) = k ( α , β ) (k\alpha,\beta)=k(\alpha,\beta) (kα,β)=k(α,β)
  • ( α , α ) = 0 ⇔ α = O (\alpha,\alpha)=0\Leftrightarrow\alpha=O (α,α)=0α=O
  • 柯西-施瓦茨不等式: ( α , β ) 2 ≤ ∣ ∣ α ∣ ∣ 2 ∣ ∣ β ∣ ∣ 2 (\alpha,\beta)^2\leq||\alpha||^2||\beta||^2 (α,β)2∣∣α2∣∣β2,当且仅当 α \alpha α β \beta β线性相关时等号成立。
    证明:若 α , β \alpha,\beta α,β线性无关,则 ∀ \forall 实数 x x x有:
    x α + β ≠ O ⇓ ( x α + β , x α + β ) = ( α , α ) x 2 + 2 ( α , β ) x + ( β , β ) > 0 x\alpha+\beta\neq O\\ \Downarrow\\ (x\alpha+\beta,x\alpha+\beta)=(\alpha,\alpha)x^2+2(\alpha,\beta)x+(\beta,\beta)>0 +β=O(+β,+β)=(α,α)x2+2(α,β)x+(β,β)>0
    作为 x x x的二次函数, ∀ x \forall x x其函数值恒大于 0 0 0,所以:
    [ 2 ( α , β ) ] 2 − 4 ( α , α ) ( β , β ) < 0 ⇓ ( α , β ) 2 < ∣ ∣ α ∣ ∣ 2 ∣ ∣ β ∣ ∣ 2 [2(\alpha,\beta)]^2-4(\alpha,\alpha)(\beta,\beta)<0\\ \Downarrow\\ (\alpha,\beta)^2<||\alpha||^2||\beta||^2 [2(α,β)]24(α,α)(β,β)<0(α,β)2<∣∣α2∣∣β2
    α , β \alpha,\beta α,β线性相关,当 α = O \alpha=O α=O β = O \beta=O β=O时:
    ( α , β ) 2 = ∣ ∣ α ∣ ∣ 2 ∣ ∣ β ∣ ∣ 2 = 0 (\alpha,\beta)^2=||\alpha||^2||\beta||^2=0 (α,β)2=∣∣α2∣∣β2=0
    β = k α ≠ O \beta=k\alpha\neq O β=kα=O时:
    ( α , β ) 2 = ( α , k α ) 2 = k 2 ( α , α ) 2 = ( α , α ) ( k α , k α ) = ∣ ∣ α ∣ ∣ 2 ∣ ∣ β ∣ ∣ 2 (\alpha,\beta)^2=(\alpha,k\alpha)^2=k^2(\alpha,\alpha)^2=(\alpha,\alpha)(k\alpha,k\alpha)=||\alpha||^2||\beta||^2 (α,β)2=(α,kα)2=k2(α,α)2=(α,α)(kα,kα)=∣∣α2∣∣β2
  • n n n维向量组 α 1 , α 2 , … , α r \alpha_1,\alpha_2,\dots,\alpha_r α1,α2,,αr是一组两两正交的非零向量,则 α 1 , α 2 , … , α r \alpha_1,\alpha_2,\dots,\alpha_r α1,α2,,αr线性无关。
    证明:设
    k 1 α 1 + k 2 α 2 + ⋯ + k r α r = O ① \tag*{①}k_1\alpha_1+k_2\alpha_2+\dots+k_r\alpha_r=O k1α1+k2α2++krαr=O
    则必有 k 1 = 0 , k 2 = 0 , … , k r = 0 k_1=0,k_2=0,\dots,k_r=0 k1=0,k2=0,,kr=0,用 α 1 \alpha_1 α1对①两边做内积得:
    ( α 1 , k 1 α 1 + k 2 α 2 + ⋯ + k r α r ) = ( α 1 , O ) ⇓ k 1 ( α 1 , α 1 ) + k 2 ( α 1 , α 2 ) + ⋯ + k r ( α 1 , α r ) = 0 ⇓ k 1 ( α 1 , α 1 ) = 0 (\alpha_1,k_1\alpha_1+k_2\alpha_2+\dots+k_r\alpha_r)=(\alpha_1,O)\\ \Downarrow\\ k_1(\alpha_1,\alpha_1)+k_2(\alpha_1,\alpha_2)+\dots+k_r(\alpha_1,\alpha_r)=0\\ \Downarrow\\ k_1(\alpha_1,\alpha_1)=0 (α1,k1α1+k2α2++krαr)=(α1,O)k1(α1,α1)+k2(α1,α2)++kr(α1,αr)=0k1(α1,α1)=0
    α 1 ≠ 0 , ( α 1 , α 1 ) > 0 \alpha_1\neq0,(\alpha_1,\alpha_1)>0 α1=0,(α1,α1)>0,所以必有 k 1 = 0 k_1=0 k1=0,同理可证 k 2 = 0 , … , k r = 0 k_2=0,\dots,k_r=0 k2=0,,kr=0
  • 单位化:设 β 1 , β 2 , β 3 \beta_1,\beta_2,\beta_3 β1,β2,β3,将其单位化有:
    γ 1 = β 1 ∣ ∣ β 1 ∣ ∣ , γ 2 = β 2 ∣ ∣ β 2 ∣ ∣ , γ 3 = β 3 ∣ ∣ β 3 ∣ ∣ \gamma_1=\frac{\beta_1}{||\beta_1||},\gamma_2=\frac{\beta_2}{||\beta_2||},\gamma_3=\frac{\beta_3}{||\beta_3||} γ1=∣∣β1∣∣β1,γ2=∣∣β2∣∣β2,γ3=∣∣β3∣∣β3
  • Schmidt正交化:设 α 1 , α 2 , α 3 \alpha_1,\alpha_2,\alpha_3 α1,α2,α3线性无关,令
    β 1 = α 1 β 2 = α 2 − ( α 2 , β 1 ) ( β 1 , β 1 ) β 1 β 3 = α 3 − ( α 3 , β 1 ) ( β 1 , β 1 ) β 1 − ( α 3 , β 2 ) ( β 2 , β 2 ) β 2 \beta_1=\alpha_1\\ \beta_2=\alpha_2-\frac{(\alpha_2,\beta_1)}{(\beta_1,\beta_1)}\beta_1\\ \beta_3=\alpha_3-\frac{(\alpha_3,\beta_1)}{(\beta_1,\beta_1)}\beta_1-\frac{(\alpha_3,\beta_2)}{(\beta_2,\beta_2)}\beta_2 β1=α1β2=α2(β1,β1)(α2,β1)β1β3=α3(β1,β1)(α3,β1)β1(β2,β2)(α3,β2)β2
    那么 β 1 , β 2 , β 3 \beta_1,\beta_2,\beta_3 β1,β2,β3两两正交,则 α 1 , α 2 , α 3 \alpha_1,\alpha_2,\alpha_3 α1,α2,α3 β 1 , β 2 , β 3 \beta_1,\beta_2,\beta_3 β1,β2,β3这一过程称为Schmidt正交化

向量组的线性表示

设向量组 α 1 , α 2 , … , α n \alpha_1,\alpha_2,\dots,\alpha_n α1,α2,,αn n n n个实数 k 1 , k 2 , … , k n k_1,k_2,\dots,k_n k1,k2,,kn,称 k 1 α 1 , + k 2 α 2 + ⋯ + k n α n k_1\alpha_1,+k_2\alpha_2+\dots+k_n\alpha_n k1α1,+k2α2++knαn
是向量组 α 1 , α 2 , … , α n \alpha_1,\alpha_2,\dots,\alpha_n α1,α2,,αn的一个线性组合 k 1 , k 2 , … , k n k_1,k_2,\dots,k_n k1,k2,,kn称为这个线性组合的系数。如果向量 β \beta β可以表示为 α 1 , α 2 , … , α n \alpha_1,\alpha_2,\dots,\alpha_n α1,α2,,αn的线性组合,即
β = k 1 α 1 , + k 2 α 2 + ⋯ + k n α n \beta=k_1\alpha_1,+k_2\alpha_2+\dots+k_n\alpha_n β=k1α1,+k2α2++knαn
则称向量 β \beta β可由 α 1 , α 2 , … , α n \alpha_1,\alpha_2,\dots,\alpha_n α1,α2,,αn线性表示。向量 β \beta β可由 α 1 , α 2 , … , α n \alpha_1,\alpha_2,\dots,\alpha_n α1,α2,,αn线性表示等价于
[ α 1 , α 2 , … , α n ] [ k 1 k 2 ⋮ k m ] = β [\alpha_1,\alpha_2,\dots,\alpha_n] \begin{bmatrix} k_1\\k_2\\\vdots\\k_m \end{bmatrix} =\beta [α1,α2,,αn] k1k2km =β有解。设向量组 α 1 , α 2 , … , α n ① β 1 , β 2 , … , β m ② \alpha_1,\alpha_2,\dots,\alpha_n①\\\beta_1,\beta_2,\dots,\beta_m② α1,α2,,αnβ1,β2,,βm ① ① 中的每个向量均可由 ② ② 线性表示,则称向量组 ① ① 可由向量组 ② ② 线性表示,若向量组 ① ① 和向量组 ② ② 可以互相线性表示,则称向量组 ① ① 等价于向量组 ② ②

向量组的线性相关

对向量组 α 1 , α 2 , … , α n \alpha_1,\alpha_2,\dots,\alpha_n α1,α2,,αn,如果存在不全为零的系数使得 k 1 α 1 , + k 2 α 2 + ⋯ + k n α n = O k_1\alpha_1,+k_2\alpha_2+\dots+k_n\alpha_n=O k1α1,+k2α2++knαn=O则称向量组 α 1 , α 2 , … , α n \alpha_1,\alpha_2,\dots,\alpha_n α1,α2,,αn线性相关,否则就称它线性无关。向量组 α 1 , α 2 , … , α n \alpha_1,\alpha_2,\dots,\alpha_n α1,α2,,αn线性相关等价于 [ α 1 , α 2 , … , α n ] [ x 1 x 2 ⋮ x n ] = O [\alpha_1,\alpha_2,\dots,\alpha_n]\begin{bmatrix}x_1\\x_2\\\vdots\\x_n\end{bmatrix}=O [α1,α2,,αn] x1x2xn =O有非零解。线性相关的几何意义如下:

  • α \alpha α相关 ⇔ α = O \Leftrightarrow \alpha=O α=O
  • α 1 , α 2 \alpha_1,\alpha_2 α1,α2相关 ⇔ α 1 , α 2 \Leftrightarrow \alpha_1,\alpha_2 α1,α2共线。
  • α 1 , α 2 , α 3 \alpha_1,\alpha_2,\alpha_3 α1,α2,α3相关 ⇔ α 1 , α 2 , α 3 \Leftrightarrow \alpha_1,\alpha_2,\alpha_3 α1,α2,α3共面。

线性相关的性质

  • 含有 n + 1 n+1 n+1 n n n维向量的向量组必线性相关。
    证明:设向量组
    α 1 , α 2 , α 3 = ( a 11 , a 12 ) , ( a 21 , a 22 ) , ( a 31 , a 32 ) \alpha_1,\alpha_2,\alpha_3=(a_{11},a_{12}),(a_{21},a_{22}),(a_{31},a_{32}) α1,α2,α3=(a11,a12),(a21,a22),(a31,a32)
    则方程组
    k 1 α 1 , + k 2 α 2 + k 3 α 3 = O ⇓ { a 11 k 1 + a 21 k 2 + a 31 k 3 = 0 a 12 k 1 + a 22 k 2 + a 32 k 3 = 0 k_1\alpha_1,+k_2\alpha_2+k_3\alpha_3=O\\ \Downarrow\\ \begin{cases} a_{11}k_1+a_{21}k_2+a_{31}k_3=0\\ a_{12}k_1+a_{22}k_2+a_{32}k_3=0 \end{cases} k1α1,+k2α2+k3α3=O{a11k1+a21k2+a31k3=0a12k1+a22k2+a32k3=0
    有无穷解,所以向量组 α 1 , α 2 , α 3 \alpha_1,\alpha_2,\alpha_3 α1,α2,α3线性相关。
  • l l l维向量组 α 1 , α 2 , … , α n \alpha_1,\alpha_2,\dots,\alpha_n α1,α2,,αn线性相关 ⇒ l \Rightarrow l l维向量组 α 1 , α 2 , … , α n , … , α m ( m > n ) \alpha_1,\alpha_2,\dots,\alpha_n,\dots,\alpha_m(m>n) α1,α2,,αn,,αm(m>n)也一定线性相关。
    证明:存在不全为零的系数使得
    k 1 α 1 , + k 2 α 2 + ⋯ + k n α n = O k_1\alpha_1,+k_2\alpha_2+\dots+k_n\alpha_n=O k1α1,+k2α2++knαn=O
    那么那么无论系数 k n + 1 , … , k n k_{n+1},\dots,k_n kn+1,,kn等于什么,总存在不全为零的系数使下列式子成立:
    k 1 α 1 , + k 2 α 2 + ⋯ + k n α n + k n + 1 α n + 1 + ⋯ + k m α m = O k_1\alpha_1,+k_2\alpha_2+\dots+k_n\alpha_n+k_{n+1}\alpha_{n+1}+\dots+k_m\alpha_m=O k1α1,+k2α2++knαn+kn+1αn+1++kmαm=O
  • n n n维向量组 α 1 , α 2 , … , α l \alpha_1,\alpha_2,\dots,\alpha_l α1,α2,,αl线性无关 ⇒ m ( m > n ) \Rightarrow m(m>n) m(m>n)维向量组 α 1 , α 2 , … , α l \alpha_1,\alpha_2,\dots,\alpha_l α1,α2,,αl也一定线性无关。
    证明:设向量组
    α 1 , α 2 = ( a 11 , a 12 ) , ( a 21 , a 22 ) β 1 , β 2 = ( b 11 , b 12 , b 13 ) , ( b 21 , b 22 , b 23 ) \alpha_1,\alpha_2=(a_{11},a_{12}),(a_{21},a_{22})\\ \beta_1,\beta_2=(b_{11},b_{12},b_{13}),(b_{21},b_{22},b_{23}) α1,α2=(a11,a12),(a21,a22)β1,β2=(b11,b12,b13),(b21,b22,b23)
    因为方程组
    k 1 α 1 , + k 2 α 2 = O ⇓ { a 11 k 1 + a 21 k 2 = 0 a 12 k 1 + a 22 k 2 = 0 k_1\alpha_1,+k_2\alpha_2=O\\ \Downarrow\\ \begin{cases} a_{11}k_1+a_{21}k_2=0\\ a_{12}k_1+a_{22}k_2=0 \end{cases} k1α1,+k2α2=O{a11k1+a21k2=0a12k1+a22k2=0
    只有零解,所以方程组
    k 1 β 1 , + k 2 β 2 = O ⇓ { b 11 k 1 + b 21 k 2 = 0 b 12 k 1 + b 22 k 2 = 0 b 13 k 1 + b 23 k 2 = 0 k_1\beta_1,+k_2\beta_2=O\\ \Downarrow\\ \begin{cases} b_{11}k_1+b_{21}k_2=0\\ b_{12}k_1+b_{22}k_2=0\\ b_{13}k_1+b_{23}k_2=0\\ \end{cases} k1β1,+k2β2=O b11k1+b21k2=0b12k1+b22k2=0b13k1+b23k2=0
    也只有零解。

总结一下以上结论:

  • 向量组中向量的个数 > > >向量组的维数 ⇒ \Rightarrow 向量组线性相关
  • 对于同维向量组有:
    • 向量数少线性相关 ⇒ \Rightarrow 向量数多线性相关
    • 向量数多线性无关 ⇒ \Rightarrow 向量数少线性无关
  • 对于同向量数向量组有:
    • 低维线性无关 ⇒ \Rightarrow 高维线性无关
    • 高维线性相关 ⇒ \Rightarrow 低维线性相关

线性相关和线性表示的关系

  • 向量组 α 1 , α 2 , … , α n ( n ≥ 2 ) \alpha_1,\alpha_2,\dots,\alpha_n(n≥2) α1,α2,,αn(n2)线性相关 ⇔ ∃ \Leftrightarrow \exists 向量 α i \alpha_i αi可由其余向量 α 1 , … , α i − 1 , α i + 1 , … , α n \alpha_1,\dots,\alpha_{i-1},\alpha_{i+1},\dots,\alpha_n α1,,αi1,αi+1,,αn线性表示。
    证明:

    • 必要性:如果向量组 α 1 , α 2 , … , α n ( n ≥ 2 ) \alpha_1,\alpha_2,\dots,\alpha_n(n≥2) α1,α2,,αn(n2)线性相关,则存在不全为零的系数使得:
      k 1 α 1 + k 2 α 2 + ⋯ + k n α n = O k_1\alpha_1+k_2\alpha_2+\dots+k_n\alpha_n=O k1α1+k2α2++knαn=O
      不妨设 k 1 ≠ 0 k_1\neq0 k1=0,则有:
      k 1 α 1 = − k 2 α 2 − k 3 α 3 − ⋯ − k n α n k_1\alpha_1=-k_2\alpha_2-k_3\alpha_3-\dots -k_n\alpha_n k1α1=k2α2k3α3knαn
      那么:
      α 1 = − k 2 k 1 α 2 − k 3 k 1 α 3 − ⋯ − k n k 1 α n \alpha_1=-\frac{k_2}{k_1}\alpha_2-\frac{k_3}{k_1}\alpha_3-\dots-\frac{k_n}{k_1}\alpha_n α1=k1k2α2k1k3α3k1knαn
    • 充分性:如果至少有一个向量 α i \alpha_i αi可由其余向量 α 1 , … , α i − 1 , α i + 1 , … , α n \alpha_1,\dots,\alpha_{i-1},\alpha_{i+1},\dots,\alpha_n α1,,αi1,αi+1,,αn线性表示,那么:
      α i = α 1 k 1 + ⋯ + α i − 1 k i − 1 + α i + 1 k i + 1 + ⋯ + α n k n \alpha_i=\alpha_1k_1+\dots+\alpha_{i-1}k_{i-1}+\alpha_{i+1}k_{i+1}+\dots+\alpha_nk_n αi=α1k1++αi1ki1+αi+1ki+1++αnkn
      表示,那么:
      O = α 1 k 1 + ⋯ + α i − 1 k i − 1 + α i + 1 k i + 1 + ⋯ + α n k n − α i O=\alpha_1k_1+\dots+\alpha_{i-1}k_{i-1}+\alpha_{i+1}k_{i+1}+\dots+\alpha_nk_n-\alpha_i O=α1k1++αi1ki1+αi+1ki+1++αnknαi
      显然该方程式的系数不全为零,所以该方程式线性相关。
  • α 1 , α 2 , … , α n \alpha_1,\alpha_2,\dots,\alpha_n α1,α2,,αn线性无关,而 α 1 , α 2 , … , α n , β \alpha_1,\alpha_2,\dots,\alpha_n,\beta α1,α2,,αn,β线性相关 ⇒ \Rightarrow 向量 β \beta β必能由 α 1 , α 2 , … , α n \alpha_1,\alpha_2,\dots,\alpha_n α1,α2,,αn线性表示且表示法唯一。
    证明:如果 α 1 , α 2 , … , α n , β \alpha_1,\alpha_2,\dots,\alpha_n,\beta α1,α2,,αn,β线性相关,则:
    α 1 k 1 + α 2 k 2 + ⋯ + α n k n + β k n + 1 = O \alpha_1k_1+\alpha_2k_2+\dots+\alpha_nk_n+\beta k_{n+1}=O α1k1+α2k2++αnkn+βkn+1=O
    假设 k n + 1 = 0 k_{n+1}=0 kn+1=0,那么 k 1 , k 2 , … , k n k_1,k_2,\dots,k_n k1,k2,,kn不全为零,则 α 1 , α 2 , … , α n \alpha_1,\alpha_2,\dots,\alpha_n α1,α2,,αn线性相关,与已知相违背,所以向量 β \beta β必能由 α 1 , α 2 , … , α n \alpha_1,\alpha_2,\dots,\alpha_n α1,α2,,αn线性表示。如果 β \beta β有两种不同的表示法,则:
    β = α 1 x 1 + α 2 x 2 + ⋯ + α n x n β = α 1 y 1 + α 2 y 2 + ⋯ + α n y n \beta=\alpha_1x_1+\alpha_2x_2+\dots+\alpha_nx_n\\ \beta=\alpha_1y_1+\alpha_2y_2+\dots+\alpha_ny_n β=α1x1+α2x2++αnxnβ=α1y1+α2y2++αnyn
    那么:
    O = ( x 1 − y 1 ) α 1 + ( x 2 − y 2 ) α 2 + ⋯ + ( x n − y n ) α n O=(x_1-y_1)\alpha_1+(x_2-y_2)\alpha_2+\dots+(x_n-y_n)\alpha_n O=(x1y1)α1+(x2y2)α2++(xnyn)αn
    x 1 − y 1 , x 2 − y 2 , … , x n − y n x_1-y_1,x_2-y_2,\dots,x_n-y_n x1y1,x2y2,,xnyn不全为零,则 α 1 , α 2 , … , α n \alpha_1,\alpha_2,\dots,\alpha_n α1,α2,,αn线性相关,与已知相违背,所以 β \beta β的表示法唯一。

  • α 1 , α 2 , … , α s \alpha_1,\alpha_2,\dots,\alpha_s α1,α2,,αs可由 β 1 , β 2 , … , β t \beta_1,\beta_2,\dots,\beta_t β1,β2,,βt线性表示,且 s > t ⇒ α 1 , α 2 , … , α s s>t \Rightarrow\alpha_1,\alpha_2,\dots,\alpha_s s>tα1,α2,,αs必线性相关(多向量数向量组可被少向量数向量组线性表示,那么多向量数向量组一定线性相关)。
    证明:因为 α 1 , α 2 , … , α s \alpha_1,\alpha_2,\dots,\alpha_s α1,α2,,αs可由 β 1 , β 2 , … , β t \beta_1,\beta_2,\dots,\beta_t β1,β2,,βt线性表示,那么:
    { α 1 = Γ 11 β 1 + Γ 21 β 2 + ⋯ + Γ t 1 β t α 2 = Γ 12 β 1 + Γ 22 β 2 + ⋯ + Γ t 2 β t … α s = Γ 1 s β 1 + Γ 2 s β 2 + ⋯ + Γ t s β t \begin{cases} \alpha_1=\Gamma_{11}\beta_1+\Gamma_{21}\beta_2+\dots+\Gamma_{t1}\beta_t\\ \alpha_2=\Gamma_{12}\beta_1+\Gamma_{22}\beta_2+\dots+\Gamma_{t2}\beta_t\\ \dots\\ \alpha_s=\Gamma_{1s}\beta_1+\Gamma_{2s}\beta_2+\dots+\Gamma_{ts}\beta_t\\ \end{cases} α1=Γ11β1+Γ21β2++Γt1βtα2=Γ12β1+Γ22β2++Γt2βtαs=Γ1sβ1+Γ2sβ2++Γtsβt
    即有:
    [ α 1 , α 2 , … , α s ] = [ β 1 , β 2 , … , β t ] [ Γ 11 Γ 12 … Γ 1 s Γ 21 Γ 22 … Γ 2 s ⋮ ⋮ ⋮ Γ t 1 Γ t 2 … Γ t s ] ( 记为 C ) \begin{bmatrix} \alpha_1,\alpha_2,\dots,\alpha_s \end{bmatrix} = \begin{bmatrix} \beta_1,\beta_2,\dots,\beta_t \end{bmatrix} \begin{bmatrix} \Gamma_{11}&\Gamma_{12}&\dots&\Gamma_{1s}\\ \Gamma_{21}&\Gamma_{22}&\dots&\Gamma_{2s}\\ \vdots&\vdots&&\vdots\\ \Gamma_{t1}&\Gamma_{t2}&\dots&\Gamma_{ts}\\ \end{bmatrix} (记为C) [α1,α2,,αs]=[β1,β2,,βt] Γ11Γ21Γt1Γ12Γ22Γt2Γ1sΓ2sΓts (记为C)
    因为 s > t s>t s>t,那么 C X = O CX=O CX=O必有非零解(未知数多,方程少),假设
    η = ( k 1 , k 2 , … , k s ) \eta=(k_1,k_2,\dots,k_s) η=(k1,k2,,ks)是该方程组的解,则 C η = O C\eta=O Cη=O,那么
    [ α 1 , α 2 , … , α s ] η = [ β 1 , β 2 , … , β t ] C η = O \begin{bmatrix} \alpha_1,\alpha_2,\dots,\alpha_s \end{bmatrix}\eta = \begin{bmatrix} \beta_1,\beta_2,\dots,\beta_t \end{bmatrix}C\eta=O [α1,α2,,αs]η=[β1,β2,,βt]Cη=O
    ∃ k 1 , k 2 , … , k s \exists k_1,k_2,\dots,k_s k1,k2,,ks不全为 0 0 0,使
    k 1 α 1 + k 2 α 2 + ⋯ + k s α s = O k_1\alpha_1+k_2\alpha_2+\dots+k_s\alpha_s=O k1α1+k2α2++ksαs=O
    所以 α 1 , α 2 , … , α s \alpha_1,\alpha_2,\dots,\alpha_s α1,α2,,αs必线性相关。

  • α 1 , α 2 , … , α s \alpha_1,\alpha_2,\dots,\alpha_s α1,α2,,αs线性无关,且可由 β 1 , β 2 , … , β t \beta_1,\beta_2,\dots,\beta_t β1,β2,,βt线性表示 ⇒ s ≤ t \Rightarrow s≤t st

  • n n n n n n维向量可以表示任何一个 n n n维向量 ⇔ \Leftrightarrow 这个 n n n维向量线性无关。

向量组的秩

在向量组 α 1 , α 2 , … , α n \alpha_1,\alpha_2,\dots,\alpha_n α1,α2,,αn中,如任意 r r r个向量 α i 1 , α i 2 , … , α i r \alpha_{i1},\alpha_{i2},\dots,\alpha_{ir} αi1,αi2,,αir线性无关,再添加任意一个向量 α j ( j = 1 , 2 , … , n ) \alpha_j(j=1,2,\dots,n) αj(j=1,2,,n),向量组 α i 1 , α i 2 , … , α i r , α j \alpha_{i1},\alpha_{i2},\dots,\alpha_{ir},\alpha_j αi1,αi2,,αir,αj就线性相关,则称 α i 1 , α i 2 , … , α i r \alpha_{i1},\alpha_{i2},\dots,\alpha_{ir} αi1,αi2,,αir是向量组 α 1 , α 2 , … , α n \alpha_1,\alpha_2,\dots,\alpha_n α1,α2,,αn的一个极大线性无关组。极大线性无关组中所包含向量的个数称为向量组的秩,记作 r ( α 1 , α 2 , … , α n ) r(\alpha_1,\alpha_2,\dots,\alpha_n) r(α1,α2,,αn)只有零向量的向量组,规定其秩为 0 0 0。极大线性无关组的性质如下:

  • 向量组可由其极大线性无关组表示。
  • 矩阵 A A A经初等行变化变为 B B B矩阵,那么 A , B A,B A,B的列向量具有相同的线性相关性并且有相同的表示方法。
    证明:设 P P P可逆,如果 P A = B PA=B PA=B,对矩阵 A , B A,B A,B按列分块:
    P [ α 1 α 2 α 3 ] = [ β 1 β 2 β 3 ] ⇓ P α 1 = β 1 , P α 2 = β 2 , P α 3 = β 3 P\begin{bmatrix}\alpha_1&\alpha_2&\alpha_3\end{bmatrix}=\begin{bmatrix}\beta_1&\beta_2&\beta_3\end{bmatrix}\\ \Downarrow\\ P\alpha_1=\beta_1,P\alpha_2=\beta_2,P\alpha_3=\beta_3 P[α1α2α3]=[β1β2β3]Pα1=β1,Pα2=β2,Pα3=β3
    如果 k 1 α 1 + k 2 α 2 + k 3 α 3 = O k_1\alpha_1+k_2\alpha_2+k_3\alpha_3=O k1α1+k2α2+k3α3=O
    那么
    P ( k 1 α 1 + k 2 α 2 + k 3 α 3 ) = O ⇓ k 1 β 1 + k 2 β 2 + k 3 β 3 = O P(k_1\alpha_1+k_2\alpha_2+k_3\alpha_3)=O\\ \Downarrow\\ k_1\beta_1+k_2\beta_2+k_3\beta_3=O P(k1α1+k2α2+k3α3)=Ok1β1+k2β2+k3β3=O
    如果 α 1 = x 2 α 2 + x 3 α 3 \alpha_1=x_2\alpha_2+x_3\alpha_3 α1=x2α2+x3α3
    那么
    P α 1 = x 2 P α 2 + x 3 P α 3 ⇓ β 1 = x 2 β 2 + x 3 β 3 P\alpha_1=x_2P\alpha_2+x_3P\alpha_3\\ \Downarrow\\ \beta_1=x_2\beta_2+x_3\beta_3 Pα1=x2Pα2+x3Pα3β1=x2β2+x3β3

向量组秩的性质如下:

  • 矩阵 A A A的秩等于 A A A的列向量组的秩,也等于 A A A的行向量组的秩。
    证明:设
    A = [ a 11 a 12 a 12 a 21 a 22 a 23 a 31 a 32 a 33 ] = [ α 1 α 2 α 3 ] A= \begin{bmatrix} a_{11}&a_{12}&a_{12}\\ a_{21}&a_{22}&a_{23}\\ a_{31}&a_{32}&a_{33} \end{bmatrix} = \begin{bmatrix} \alpha_{1}&\alpha_{2}&\alpha_{3} \end{bmatrix} A= a11a21a31a12a22a32a12a23a33 =[α1α2α3]
    r ( A ) = 2 r(A)=2 r(A)=2,那么存在二阶子式不为零,三阶子式全为零,不妨设 ∣ a 11 a 12 a 21 a 22 ∣ ≠ 0 \begin{vmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\\\end{vmatrix}\neq0 a11a21a12a22 =0,则 ( a 11 , a 21 ) T , ( a 12 , a 22 ) T (a_{11},a_{21})^T,(a_{12},a_{22})^T (a11,a21)T,(a12,a22)T线性无关,则 α 1 , α 2 \alpha_1,\alpha_2 α1,α2线性无关。又因为三阶子式全为零,即 α 1 , α 2 , α 3 \alpha_1,\alpha_2,\alpha_3 α1,α2,α3线性相关。所以 α 3 \alpha_3 α3一定可以用 α 1 , α 2 \alpha_1,\alpha_2 α1,α2线性表处,所以 r ( α 1 , α 2 , α 3 ) = 2 r(\alpha_1,\alpha_2,\alpha_3)=2 r(α1,α2,α3)=2
  • 如果 α 1 , α 2 , … , α s \alpha_1,\alpha_2,\dots,\alpha_s α1,α2,,αs可由 β 1 , β 2 , … , β n \beta_1,\beta_2,\dots,\beta_n β1,β2,,βn线性表示,则 r ( α 1 , α 2 , … , α s ) ≤ r ( β 1 , β 2 , … , β n ) r(\alpha_1,\alpha_2,\dots,\alpha_s)≤r(\beta_1,\beta_2,\dots,\beta_n) r(α1,α2,,αs)r(β1,β2,,βn)
    证明:设 r ( α 1 , α 2 , … , α s ) = r r(\alpha_1,\alpha_2,\dots,\alpha_s)=r r(α1,α2,,αs)=r,极大线性无关组为 α i 1 , α i 2 , … , α i r \alpha_{i1},\alpha_{i2},\dots,\alpha_{ir} αi1,αi2,,αir r ( β 1 , β 2 , … , β n ) = p r(\beta_1,\beta_2,\dots,\beta_n)=p r(β1,β2,,βn)=p,极大线性无关组为 β j 1 , β j 2 , … , β j p \beta_{j1},\beta_{j2},\dots,\beta_{jp} βj1,βj2,,βjp。因为 α 1 , α 2 , … , α s \alpha_1,\alpha_2,\dots,\alpha_s α1,α2,,αs可由 β 1 , β 2 , … , β n \beta_1,\beta_2,\dots,\beta_n β1,β2,,βn线性表示,所以 α i 1 , α i 2 , … , α i r \alpha_{i1},\alpha_{i2},\dots,\alpha_{ir} αi1,αi2,,αir也可由 β 1 , β 2 , … , β n \beta_1,\beta_2,\dots,\beta_n β1,β2,,βn线性表示,又因为 β 1 , β 2 , … , β n \beta_1,\beta_2,\dots,\beta_n β1,β2,,βn可由 β j 1 , β j 2 , … , β j p \beta_{j1},\beta_{j2},\dots,\beta_{jp} βj1,βj2,,βjp线性表示,所以 α i 1 , α i 2 , … , α i r \alpha_{i1},\alpha_{i2},\dots,\alpha_{ir} αi1,αi2,,αir可由 β j 1 , β j 2 , … , β j p \beta_{j1},\beta_{j2},\dots,\beta_{jp} βj1,βj2,,βjp线性表示,所以 r < p r<p r<p,即 r ( α 1 , α 2 , … , α s ) ≤ r ( β 1 , β 2 , … , β n ) r(\alpha_1,\alpha_2,\dots,\alpha_s)≤r(\beta_1,\beta_2,\dots,\beta_n) r(α1,α2,,αs)r(β1,β2,,βn)
  • 如果 α 1 , α 2 , … , α s \alpha_1,\alpha_2,\dots,\alpha_s α1,α2,,αs可由 β 1 , β 2 , … , β n \beta_1,\beta_2,\dots,\beta_n β1,β2,,βn线性表示,但 β 1 , β 2 , … , β n \beta_1,\beta_2,\dots,\beta_n β1,β2,,βn不能由 α 1 , α 2 , … , α s \alpha_1,\alpha_2,\dots,\alpha_s α1,α2,,αs线性表示则 r ( α 1 , α 2 , … , α s ) < r ( β 1 , β 2 , … , β n ) r(\alpha_1,\alpha_2,\dots,\alpha_s)<r(\beta_1,\beta_2,\dots,\beta_n) r(α1,α2,,αs)<r(β1,β2,,βn)
  • α 1 , α 2 , … , α s \alpha_1,\alpha_2,\dots,\alpha_s α1,α2,,αs β 1 , β 2 , … , β n \beta_1,\beta_2,\dots,\beta_n β1,β2,,βn等价,则 r ( α 1 , α 2 , … , α s ) = r ( β 1 , β 2 , … , β n ) r(\alpha_1,\alpha_2,\dots,\alpha_s)=r(\beta_1,\beta_2,\dots,\beta_n) r(α1,α2,,αs)=r(β1,β2,,βn)
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

亻乍屯页女子白勺

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值