线性代数 06.01 总复习:内容总结01-03

06.01: 

 

 

⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ :,⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ∣ ∣ ∣ ∣ ∣ ∣ ∣ a 11 a 21 a n1  a 12 a 22 a n2   a 1n a 2n a nn  ∣ ∣ ∣ ∣ ∣ ∣ ∣ =(1) t a 1p 1  a 2p 2  a np n    ⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ 1.(D=D T );2.(),;[(),]3.();[(),]4.(),;5.()K(),. ⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪  n k=1 a ik A jk ={Di=j0ij  n k=1 a ki A kj ={Di=j0ij  ,{线   

 

1 

D=∣ ∣ ∣ ∣ ∣ ∣ a 11 a n1 a n1  a 12 a n2 a n2   a 1n a nn a nn  ∣ ∣ ∣ ∣ ∣ ∣ =a i1 A i1 +a i2 A i2 ++a in A in (i=1,2,,n)=a 1j A 1j +a 2j A 2j ++a nj A nj (j=1,2,,n) 

2 

a i1 A j1 +a i2 A j2 ++a in A jn =0(ij)a 1j A 1k +a 2j A 2k ++a nj A nk =0(jk) 

3线 

⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ a 11 x 1 +a 12 x 2 ++a 1n x n =b 1 a 21 x 1 +a 22 x 2 ++a 2n x n =b 2 a n1 x 1 +a n2 x 2 ++a nn x n =b n   
D0,,x 1 =D 1 D ,x 2 =D 2 D ,,x n =D n D .D j (j=1,2,,n)Djn. 

4线 

⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ a 11 x 1 +a 12 x 2 ++a 1n x n =0a 21 x 1 +a 22 x 2 ++a 2n x n =0a n1 x 1 +a n2 x 2 ++a nn x n =0  
D0,,线,. 

 

1 

D=∣ ∣ ∣ ∣ ∣ ∣ ∣ λ 1  λ 2   λ n  ∣ ∣ ∣ ∣ ∣ ∣ ∣ =λ 1 λ 2 λ n ;D=∣ ∣ ∣ ∣ ∣ ∣ λ n   λ 2  λ 1  ∣ ∣ ∣ ∣ ∣ ∣ =(1) n(n1)2  λ 1 λ 2 λ n . 

2 

D=∣ ∣ ∣ ∣ ∣ ∣ ∣ a 11 00 a 12 a 22 0  a 1n a 2n a nn  ∣ ∣ ∣ ∣ ∣ ∣ ∣ =∣ ∣ ∣ ∣ ∣ ∣ ∣ a 11 a 21 a n1  0a 22 a n2   00a nn  ∣ ∣ ∣ ∣ ∣ ∣ ∣ =a 11 a 22 a nn .D=∣ ∣ ∣ ∣ ∣ ∣ 00a n1   0a 2n1 a nn1  a 1n a 2n a nn  ∣ ∣ ∣ ∣ ∣ ∣ =∣ ∣ ∣ ∣ ∣ ∣ a 11 a 21 a n1  a 12 0 a 2n1  a 1n 00 ∣ ∣ ∣ ∣ ∣ ∣ =(1) n(n1)2  a 1n a 2n1 a n1 . 

3Am,Bn, 

D=∣ ∣ ∣ A0 0B ∣ ∣ ∣ =|A||B|;D=∣ ∣ ∣ 0B A0 ∣ ∣ ∣ =(1) mn |A||B|. 

4 

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ 1x 1 x 2 1 x n1 1  1x 2 x 2 2 x n1 2   1x n x 2 n x n1 n  ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ = ni>j1 (x i x j ) 

 

 

:m×na ij (i=1,2,,m;j=1,2,,n) 
⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ :线1,0n:线λ 1 ,λ 2 ,,λ n ,0n:A T =A:A T =A:,  

⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ A+B=(a ij +b ij )ABkA=(ka ij )AB=Cc ij = n k=1 a ik b kj ,A m×s ,B s×n ,C m×n A T :A T iAi.|A|=detA,A.  

⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ n|A|A  =⎛ ⎝ ⎜ ⎜ ⎜ A 11 A 12 A 1n  A 21 A 22 A 2n   A n1 A n2 A nn  ⎞ ⎠ ⎟ ⎟ ⎟   

⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ :AB=BA=E,A,BA.⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ A 1 =1|A| A   ⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ |A|0,A.|A|=0,A.AB=E,AB.   

(1)(A0 0B ) 1 =(A 1 0 0B 1  )(2)(0B A0 ) 1 =(0A 1  B 1 0 ) 

关于矩阵的乘法AB,注意当A的列数与B的行数相同时才可以相乘,而且矩阵乘法不满足交换律,消去律;即AB = AC时,不一定有B=C;AB = 0时,不一定有A = 0或B = 0;但是当A为方阵且可逆时,若AB = AC,AB = 0,则有B = C, B = 0.
(AB) T =B T A T ,(A+B) T =A T +B T  
逆矩阵
(AB) 1 =B 1 A 1 ,(A+B) 1 A 1 +B 1  

 

1.ABn,|AB|=|A||B|. 
2.A,A. 
3.nA,|A|0R(A)=nA. 
4.AB=E(BA=E),B=A 1 . 
5.A,A T =A. 
6.A,A T =A. 

 

1. 

(1)A+B=B+A; 
(2)(A+B)+C=A+(B+C); 
(3)A+0=0+A=A; 
(4)A+(A)=0; 
(5)k(lA)=(kl)A; 
(6)(k+l)A=kA+lA; 
(7)k(A+B)=kA+kB; 
(8)1A=A,0A=0. 

2. 

(1)(AB)C=A(BC); 
(2)A(B+C)=AB+AC;(A+B)C=AC+BC; 
(3)(kA)(lB)=(kl)AB; 
(4)A0=0A=0. 
 

3. 

(1)(A T ) T =A; 
(2)(A+B) T =A T +B T ; 
(3)(kA) T =kA T ; 
(r)(AB) T =B T A T . 

4. 

(1)(A 1 ) 1 =A; 
(2)(kA) 1 =k 1 A 1 ; 
(3)(AB) 1 =B 1 A 1 ; 
(4)(A T ) 1 =(A 1 ) T . 

5. 

(1)AA  =A  A=|A|E; 
(2)(kA)  =k n1 A  ; 
(3)(A  ) 1 =(A 1 )  =|A| 1 A; 
(4)(A T )  =(A  ) T . 

6.n 

(1)|A T |=|A|; 
(2)|kA|=k n |A|; 
(3)|AB|=|A||B|; 
(4)|A 1 |=|A| 1 ; 
(5)|A  |=|A| n1 . 

线 

 

线⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ 3.13.23.3线3.4  

3.1 矩阵的初等变换
⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧ ⎩ ⎨ ⎪ ⎪ 1.i.j()2.k0i()3.i()k() {1.2.AB,AB ⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ 1.(A|E)  (E|A 1 )(AE )  (EA 1  )2.A   

3.2矩阵的秩
⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ {k: ⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ .R(A)=R(A T )B,R(AB)=R(A)R(A+B)R(A)+R(B)R(AB)min{(R(A),R(B)}R(AB)R(A)+R(B)nAB=0,R(A)+R(B)n   

3.3线性方程组的解
⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ Ax=0⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ Ax=0:R(A)<n⎧ ⎩ ⎨ ⎪ ⎪ 1.2.3.  Ax=b⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ Ax=bR(A)=R(B)⎧ ⎩ ⎨ ⎪ ⎪ 1.广B2.3.    

Ax=0 
Ax=0R(A)=r=n 
Ax=0R(A)=r<n 
:x=k 1 ξ 1 +k 2 ξ 2 ++k nr ξ nr ξ 1 ,ξ 2 ,,ξ nr . 

Ax=b 
Ax=bR(A)R(B) 
Ax=bR(A)=R(B)=r 
1)r=n,.2)r<n,.:x=k 1 ξ 1 +k 2 ξ 2 ++k nr ξ nr +η  ξ 1 ,ξ 2 ,,ξ nr .η  . 

3.4初等方阵
⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ { ⎧ ⎩ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ,.A m×n ,Am;A m×n ,An..   

 

1.AB,R(A)=R(B). 
2.()A,A(). 
3.,. 
4.AB,PQ,使PAQ=B. 
5.A,P 1 ,P 2 ,,P l ,使A=P 1 ,P 2 ,,P l . 
6.n线A m×n x=0R(A)<n. 
7.n线A m×n x=bR(A)广R(A|b). 

 

1. 

(1)R(A)=R(A T ); 
(2)R(A+B)R(A)+R(B); 
(3)R(AB)min{R(A),R(B)}; 
(4)PQ,R(PA)=R(AQ)=R(A); 
(5)R(kA)={R(A),k0,0,k=0  
(6)R(A0 0B )=R(A)+R(B); 

2. 

(A|E )  (E|A 1  ) 

(AE )  (EA 1  ) 

3.A 1 B 

(A|B )  (E|A 1 B ) 

(AC )  (ECA 1  ) 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值