泛函分析(空间部分)知识点总结

最近为补充数学知识,在小破站学习了内蒙古大学孙炯老师《泛函分析》, 本文是前半部分(距离空间、赋范空间、内积空间)部分知识点的一个小总结.

泛函分析(空间部分)

距离空间

距离、距离空间的定义

非空集合 A A A中任意两个元素 x , y x, y x,y, d ( x , y ) d(x, y) d(x,y)满足

  1. 正定: ∀ x , y ∈ A , d ( x , y ) > 0 \forall x, y \in A, d(x, y) > 0 x,yA,d(x,y)>0, 且 d ( x , y ) = 0 ⇔ x = y d(x, y) = 0 \Leftrightarrow x = y d(x,y)=0x=y
  2. 对称: ∀ x , y ∈ A , d ( x , y ) = d ( y , x ) \forall x, y \in A, d(x, y) = d(y, x) x,yA,d(x,y)=d(y,x)
  3. 三角不等式: ∀ x , y , z , d ( x , y ) ≤ d ( x , z ) + d ( y , z ) \forall x, y, z, d(x, y) \leq d(x, z) + d(y, z) x,y,z,d(x,y)d(x,z)+d(y,z)

( X , d ) (X, d) (X,d)是距离空间, d ( ⋅ , ⋅ ) d(\cdot,\cdot) d(,)是距离.

距离空间例

R n = { ( x 1 , x 2 , ⋯   , x n ) ∣ x i ∈ R } \R ^ n = \{(x_1, x_2, \cdots, x_n) | x_i \in \R\} Rn={(x1,x2,,xn)xiR}, d ( x , y ) d(x, y) d(x,y)可定义欧式距离、哈密顿距离等

l ∞ = { x = ( ξ 1 , ξ 2 , ⋯   , ξ n , ⋯   ) , ∣ ξ n ∣ ≤ c x } l^\infty= \{x = (\xi_1, \xi_2, \cdots, \xi_n, \cdots), |\xi_n| \leq c_x\} l={x=(ξ1,ξ2,,ξn,),ξncx}: 所有有界序列组成的元素, d ( x , y ) = sup ⁡ j ∈ N ∗ ∣ ξ j − η j ∣ d(x, y) = \sup_{j\in \N^*} | \xi_j - \eta_j| d(x,y)=supjNξjηj

C [ a , b ] C[a, b] C[a,b]: 所有在 [ a , b ] [a, b] [a,b]区间上连续的函数, d ( x , y ) = max ⁡ a ≤ t ≤ b ∣ x ( t ) − y ( t ) ∣ d(x, y) = \max_{a \leq t\leq b} |x(t) - y(t)| d(x,y)=maxatbx(t)y(t)

离散距离空间: ∀ A ≠ ∅ , ∀ x , y ∈ A , d ( x , y ) = I ( x ≠ y ) \forall A \neq \varnothing, \forall x, y \in A, d(x, y) = \mathbb{I}(x \neq y) A=,x,yA,d(x,y)=I(x=y)

距离空间中的收敛性

有了距离空间,就可以引入极限的概念.

定义 ( X , d ) (X, d) (X,d)的序列 { x n } n = 1 ∞ \{x_n\}_{n=1}^\infty {xn}n=1 n → ∞ n\to \infty n d ( x n , x 0 ) → 0 d(x_n, x_0)\to 0 d(xn,x0)0 { x n } \{x_n\} {xn} x 0 x_0 x0为极限.

{ x n } \{x_n\} {xn}极限唯一, { x n } \{x_n\} {xn}的子列也收敛到 x 0 x_0 x0.

d ( x , y ) d(x, y) d(x,y)是二元连续函数.

内点、开集、邻域

开球: ( X , d ) (X, d) (X,d)空间中 B ( x , r ) = { x ∈ X ∣ d ( x 0 , x ) < r } B(x, r) = \{x\in X|d(x_0, x) < r\} B(x,r)={xXd(x0,x)<r}

内点: x ∈ G ⊆ X x \in G\subseteq X xGX G G G的内点 ⇔ ∃ ε > 0 , B ( g , ε ) ⊆ G \Lrarr \exists \varepsilon > 0, B(g, \varepsilon) \subseteq G ε>0,B(g,ε)G

开集: 所有点都是内点的集合. 如开球是开集.

拓扑定义下的开集: 空集全集, 任意并, 有限交

等价距离

两个距离是等价的, ∃ C 1 , C 2 , ∀ x , y , C 1 d 1 ≤ d 2 ≤ C 2 d 1 ⇔ d 1 ∼ d 2 \exists C_1, C_2, \forall x, y, C_1 d_1 \leq d_2 \leq C_2 d_1 \Lrarr d_1 \sim d_2 C1,C2,x,y,C1d1d2C2d1d1d2

连续函数

T : ( X , d ) → ( X 1 , d 1 ) T:(X, d)\rarr (X_1, d_1) T:(X,d)(X1,d1)满足 ∀ ε > 0 , ∃ δ > 0 , ∀ x , d ( x , x 0 ) < δ → d 2 ( T x , T x 0 ) < ε \forall \varepsilon > 0, \exists \delta > 0, \forall x, d(x,x_0) < \delta \rightarrow d_2(Tx, Tx_0) < \varepsilon ε>0,δ>0,x,d(x,x0)<δd2(Tx,Tx0)<ε

等价叙述:

  1. ∀ ε > 0 , ∃ δ > 0 , T B ( x 0 , δ ) ⊆ B ( T ( x 0 ) , ε ) \forall \varepsilon > 0, \exists \delta > 0, TB(x_0, \delta) \subseteq B(T(x_0), \varepsilon) ε>0,δ>0,TB(x0,δ)B(T(x0),ε)

  2. 开集的原象是开集

  3. T T T可与求极限运算交换顺序: lim ⁡ n → ∞ T x n = T lim ⁡ n → ∞ x n \lim_{n\to \infty}Tx_n = T\lim_{n\to \infty}x_n limnTxn=Tlimnxn

闭集

闭集定义: A A A ( X , d ) (X, d) (X,d)中闭集 = △ ∁ X A \overset{\triangle}= \complement_XA =XA是开集

A A A的接触点: 任意邻域中有 A A A的点(聚点: 将“邻域”改成“去心邻域”)

定义 d ( x , A ) = inf ⁡ a ∈ A d ( x , a ) d(x, A) = \inf_{a \in A} d(x, a) d(x,A)=infaAd(x,a), 则接触点即与 A A A距离为 0 0 0的点.

闭包: A ˉ = △ { x ∣ d ( x , A ) = 0 } \bar A \overset \triangle = \{x | d(x, A) = 0\} Aˉ={xd(x,A)=0}

A A A是闭集 ⇔ A = A ˉ ⇔ A \Lrarr A = \bar A \Lrarr A A=AˉA中收敛点列极限在 A A A中.

可分距离空间

A A A B B B上稠密 = △ \overset \triangle = = B ˉ = A \bar B = A Bˉ=A

等价描述: ∀ b ∈ B , ∃ { a n } n = 1 ∞ , lim ⁡ n → ∞ a n = b \forall b \in B, \exists \{a_n\}_{n=1}^\infty, \lim_{n\to \infty}a_n = b bB,{an}n=1,limnan=b

可分: 存在可数稠密子集

列紧距离空间

序列紧(Wierstrass定理), Borel紧(开覆盖) (两种紧性等价)

A A A ( X , d ) (X, d) (X,d)子集,若 A A A中每个无穷点列存在收敛点列,则称 A A A是列紧的.

列紧且闭: 自列紧(收敛到自己) ,自列紧推出“有界且闭”

列紧集的子集有界

自列紧空间上的实值函数可取得极大、极小值.

完备

所有柯西列收敛

完备空间的闭子空间完备

列紧空间是完备的

距离空间的完备化

所有距离空间都可以完备化

压缩映射原理

( X , d ) (X, d) (X,d)完备, T : X → X T: X \to X T:XX满足 ∃ θ ∈ ( 0 , 1 ) , d ( T x , T y ) ≤ θ d ( x , y ) \exists \theta \in (0, 1), d(Tx, Ty) \leq \theta d(x, y) θ(0,1),d(Tx,Ty)θd(x,y), 则 T T T有唯一不动点(这个收敛是指数速度的)

应用:

  1. 压缩型矩阵方程

  2. 微分方程、积分方程

    • 一般微分方程

    { x ( t 0 ) = x 0 d x d t = f ( x , t ) ⇒ x = ∫ t 0 t f ( x , τ ) d τ \begin{cases} x(t_0) = x_0 \\ \displaystyle \frac{\mathrm{d} x}{\mathrm{d} t} = f(x, t) \end{cases} \Rightarrow x = \int_{t_0}^t f(x, \tau) \mathrm d \tau x(t0)=x0dtdx=f(x,t)x=t0tf(x,τ)dτ

    • Fredhom积分方程
      x ( t ) = φ ( t ) + μ ∫ a b k ( t , s ) x ( s ) d s x(t) = \varphi(t) + \mu \int_{a}^b k(t, s) x(s) \mathrm{d}s x(t)=φ(t)+μabk(t,s)x(s)ds

    • Volterra积分方程
      x ( t ) = φ ( t ) + μ ∫ a t k ( t , s ) x ( s ) d s x(t) = \varphi (t) + \mu \int_{a}^{t} k(t, s) x(s) \mathrm{d} s x(t)=φ(t)+μatk(t,s)x(s)ds

线性赋范空间

赋范空间的定义和基本性质

X X X是数域 K \mathbb{K} K上线性空间, ∥ ⋅ ∥ : X → R \|\cdot \|: X\to \R :XR满足 ∀ x , y ∈ X , α ∈ K \forall x, y \in X, \alpha \in \mathbb K x,yX,αK

  1. ∥ x ∥ ≥ 0 \|x\| \geq 0 x0 ∥ x ∥ = 0 ⇔ x = 0 \|x\|=0 \Lrarr x =0 x=0x=0
  2. ∥ α x ∥ = ∣ α ∣ ∥ x ∥ \|\alpha x \| = |\alpha| \|x\| αx=αx
  3. ∥ x + y ∥ ≤ ∥ x ∥ + ∥ y ∥ \|x + y\| \leq \|x\| + \|y\| x+yx+y

称为范数

范数诱导的距离空间: d ( x , y ) = ∥ x − y ∥ d(x, y) = \|x - y\| d(x,y)=xy

∥ ⋅ ∥ \|\cdot \| 是连续函数, 可以和极限运算交换顺序.

距离空间不一定是赋范空间

满足 d ( x , y ) = d ( x + z , y + z ) , d ( α x , α y ) = ∣ α ∣ d ( x , y ) d(x, y) = d(x + z, y + z), d(\alpha x, \alpha y) = |\alpha| d(x, y) d(x,y)=d(x+z,y+z),d(αx,αy)=αd(x,y) d ( ⋅ , 0 ) d(\cdot, 0) d(,0)是范数

完备的赋范线性空间称为Banach空间.

L p L^p Lp空间

f ( x ) f(x) f(x) E E E上可测函数, 并且 1 ≤ p < ∞ 1 \leq p < \infty 1p<,
L p ( E ) = { f : E → R ∣ ∫ E ∣ f ( x ) ∣ p d x < ∞ } , ∥ x ∥ p = ( ∫ E ∣ x ( t ) ∣ p d t ) 1 p L^p(E) = \left\{f: E\to \R\Bigg|\int_E|f(x)|^p\mathrm{d}x< \infty\right\}, \quad \|x\|_p = \left(\int_E|x(t)|^p\mathrm d t\right)^{\frac{1}{p}} Lp(E)={f:EREf(x)pdx<},xp=(Ex(t)pdt)p1
三角不等式的导出

  1. Hoelder不等式: ∀ p , q > 0 , 1 / p + 1 / q = 1 \forall p, q > 0, 1/p+1/q = 1 p,q>0,1/p+1/q=1,
    ∫ E ∣ x ( t ) y ( t ) ∣ d t ≤ ( ∫ E ∣ x ( t ) ∣ p d t ) 1 p ( ∫ E ∣ x ( t ) ∣ q d t ) 1 q \int_E |x(t)y(t)|\mathrm{d}t \leq \left(\int_E |x(t)|^p\mathrm{d}t\right)^{\frac{1}{p}}\left(\int_E |x(t)|^q\mathrm{d}t\right)^{\frac{1}{q}} Ex(t)y(t)dt(Ex(t)pdt)p1(Ex(t)qdt)q1

  2. Minkowski不等式:
    ( ∫ E ∣ x ( t ) + y ( t ) ∣ p d t ) 1 p ≤ ( ∫ E ∣ x ( t ) ∣ p d t ) 1 p + ( ∫ E ∣ y ( t ) ∣ p d t ) 1 p \left(\int_E |x(t)+y(t)|^p\mathrm{d}t\right)^{\frac{1}{p}} \leq \left(\int_E |x(t)|^p\mathrm{d}t\right)^{\frac{1}{p}}+\left(\int_E |y(t)|^p\mathrm{d}t\right)^{\frac{1}{p}} (Ex(t)+y(t)pdt)p1(Ex(t)pdt)p1+(Ey(t)pdt)p1

完备(Banach),可分(有理系数多项式),连续函数在其上稠密

L ∞ L^{\infty} L

除去一个测度为 0 0 0的集合外剩下部分有界的函数组成的空间
L ∞ ( E ) = { f : E → R ∣ inf ⁡ m E 0 = 0 sup ⁡ E \ E 0 ∣ x ( t ) ∣ } L^{\infty}(E) = \left\{f: E\to \R \Bigg| \inf_{\mathrm m E_0 = 0}\sup_{E\backslash{E_0}} |x(t)| \right\} L(E)={f:ERmE0=0infE\E0supx(t)}
范数定义为本性上确界
∥ x ∥ = inf ⁡ m E 0 = 0 sup ⁡ E \ E 0 ∣ x ( t ) ∣ = △ e s s sup ⁡ E ∣ x ( t ) ∣ \|x\| = \inf_{\mathrm m E_0 = 0}\sup_{E\backslash{E_0}} |x(t)| \overset \triangle =\mathrm{ess} \sup_E |x(t)| x=mE0=0infE\E0supx(t)=essEsupx(t)
完备(Banach), 不可分.

收敛性: 除去一个 0 0 0测度集之外处处收敛.

l p l^p lp空间、 l ∞ l^\infty l空间

l p = { x = { ξ n } ∣ ∑ k = 1 ∞ ∣ ξ k ∣ p < ∞ } l^p = \{x = \{\xi_n\}|\sum_{k=1}^\infty |\xi_k|^p<\infty\} lp={x={ξn}k=1ξkp<}仍可建立Hoelder不等式和Minkowski不等式,范数
∥ x ∥ = ∑ k = 1 ∞ ∣ ξ k ∣ p < ∞ \|x\| = \sum_{k=1}^\infty |\xi_k|^p<\infty x=k=1ξkp<
p < ∞ p < \infty p<时是可分的、完备的

l ∞ = { x = ( ξ 1 , ξ 2 , ⋯   , ξ n , ⋯   ) , ∣ ξ n ∣ ≤ c x } l^\infty= \{x = (\xi_1, \xi_2, \cdots, \xi_n, \cdots), |\xi_n| \leq c_x\} l={x=(ξ1,ξ2,,ξn,),ξncx}, 范数
∥ x ∥ = sup ⁡ k ∣ ξ k ∣ \|x\| = \sup_k |\xi_k| x=ksupξk
l ∞ l^{\infty} l是不可分的、完备的

凸集

定义: A A A是线性空间 X X X的子集, 若 ∀ x , y ∈ A , α ∈ ( 0 , 1 ) \forall x, y \in A, \alpha \in (0, 1) x,yA,α(0,1), α x + ( 1 − α ) y ∈ A \alpha x + (1-\alpha) y \in A αx+(1α)yA, 则称 A A A为凸集.

∀ B ∈ X \forall B \in X BX, 定义包含 B B B的所有凸集的交为 B B B凸包, C o ( A ) \mathrm{Co} (A) Co(A)

子空间

赋范空间d额真子空间不可能是开的

R n \R^n Rn中所有子空间是闭的(因为是完备的)

∞ \infty 维时子空间不一定是闭的

Riesz引理

( X , ∥ ⋅ ∥ ) (X, \|\cdot\|) (X,)是赋范线性空间, X 0 X_0 X0 X X X的真子空间, 则 ∀ ε > 0 , ∃ x 0 ∈ X , ∥ x 0 ∥ = 1 \forall \varepsilon > 0, \exists x_0 \in X, \|x_0\| = 1 ε>0,x0X,x0=1 ∀ x ∈ X 0 \forall x \in X_0 xX0
∥ x − x 0 ∥ > 1 − ε \|x - x_0\| > 1-\varepsilon xx0>1ε
描述了赋范空间下的“垂直”属性,但是 > 1 − ε >1-\varepsilon >1ε不能改成 ≥ 1 \geq 1 1

等价范数

( X , ∥ ⋅ ∥ 1 ) , ( X , ∥ ⋅ ∥ 2 ) (X, \|\cdot\|_1), (X, \|\cdot \|_2) (X,1),(X,2)是同一线性空间上两个不同的范数, 若 ∃ C , D > 0 , ∀ a ∈ X \exists C, D > 0, \forall a \in X C,D>0,aX
C ∥ a ∥ 1 ≤ ∥ a ∥ 2 ≤ D ∥ a ∥ 1 C\|a\|_1 \leq \|a\|_2 \leq D\|a\|_1 Ca1a2Da1
则称两个范数 ∥ ⋅ ∥ 1 , ∥ ⋅ ∥ 2 \|\cdot\|_1, \|\cdot\|_2 1,2等价

有限维范数

有限维赋范空间与 R n \R^n Rn代数同构、拓扑同胚

有限维赋范空间中任意两个范数等价

赋范空间 X X X是有限维的 ⇔ X \Leftrightarrow X X中一切有界集是列紧的 ⇔ \Lrarr X X X上单位球面是列紧的

级数

∑ k = 1 ∞ x n = x 1 + x 2 + x 3 + ⋯ S n = ∑ k = 1 n x k \sum_{k=1}^\infty x_n = x_1 + x_2 + x_3 + \cdots \\ S_n = \sum_{k=1}^n x_k k=1xn=x1+x2+x3+Sn=k=1nxk

级数收敛↔部分和序列收敛: ∥ S n − S ∥ → 0 ( n → ∞ ) \|S_n - S\| \to 0 (n \to \infty) SnS0(n), S S S是级数的和.

对于完备空间, 若 ∑ k = 1 n ∥ x k ∥ \sum_{k=1}^n\|x_k\| k=1nxk收敛,则 ∥ ∑ k = 1 n x k ∥ \|\sum_{k=1}^nx_k\| k=1nxk收敛,且
∥ ∑ k = 1 n x k ∥ ≤ ∑ k = 1 n ∥ x k ∥ \left\|\sum_{k=1}^nx_k\right\| \leq \sum_{k=1}^n\|x_k\| k=1nxkk=1nxk
而“若 ∑ k = 1 n ∥ x k ∥ \sum_{k=1}^n\|x_k\| k=1nxk收敛,则 ∥ ∑ k = 1 n x k ∥ \|\sum_{k=1}^nx_k\| k=1nxk收敛”也蕴含完备.

商空间

M M M X X X的线性子空间, ∀ x 1 , x 2 ∈ X \forall x_1, x_2\in X x1,x2X,若 x 1 − x 2 ∈ M x_1-x_2 \in M x1x2M则称 x 1 , x 2 x_1, x_2 x1,x2关于 M M M等价. x ~ \tilde x x~定义为与 x x x等价的所有元素, X ~ = X / M \tilde X = X/M X~=X/M

商空间中的范数: ∥ x ~ ∥ = inf ⁡ y ∈ x ~ ∥ y ∥ \|\tilde x\| = \inf_{y\in \tilde x} \|y\| x~=infyx~y

完备空间对闭子空间的商空间总是完备的.

内积空间

内积定义

线性空间 X X X上定义 ( ⋅ , ⋅ ) : X × X → K (\cdot, \cdot): X\times X\to \mathbb K (,):X×XK, 满足 ∀ a , b , c , ∈ X \forall a, b, c, \in X a,b,c,X

  1. ( a , a ) ≥ 0 (a, a) \geq 0 (a,a)0, 且 ( a , a ) = 0 ⇔ a = 0 (a, a) = 0 \Lrarr a = 0 (a,a)=0a=0
  2. ( a , b ) = ( b , a ) ‾ (a, b) = \overline{(b, a)} (a,b)=(b,a)
  3. ( α a , b ) = α ( a , b ) (\alpha a, b) = \alpha (a, b) (αa,b)=α(a,b)
  4. ( a + b , c ) = ( a , c ) + ( b , c ) (a + b, c) = (a, c) + (b, c) (a+b,c)=(a,c)+(b,c)

X X X上一个内积.

Schwartz不等式: ∣ ( x , y ) ∣ 2 ≤ ( x , x ) ( y , y ) |(x, y)|^2 \leq (x, x) (y, y) (x,y)2(x,x)(y,y)

∥ x ∥ = ( x , x ) \|x\|=(x, x) x=(x,x)是范数, 三角不等式由Schwartz不等式证明.

范数与内积的关系: 内积空间是赋范空间,但赋范空间不一定是内积空间. 只有范数满足平行四边形法则
∥ x + y ∥ + ∥ x − y ∥ = 2 ( ∥ x ∥ 2 + ∥ y ∥ 2 ) \|x + y\| + \|x-y\| = 2(\|x\|^2+\|y\|^2) x+y+xy=2(x2+y2)
时才可以定义
( x , y ) = 1 4 ( ∥ x + y ∥ 2 − ∥ x − y ∥ 2 + i ∥ x + i y ∥ − i ∥ x − i y ∥ ) (x, y) = \frac{1}{4}(\|x+y\|^2-\|x-y\|^2+\mathrm{i} \|x+\mathrm iy\| -\mathrm{i} \|x-\mathrm iy\|) (x,y)=41(x+y2xy2+ix+iyixiy)
完备的的赋范线性空间称为Hilbert空间

H H H是Hilbert空间, Y ⊆ H Y\subseteq H YH是线性子空间, 则 Y Y Y是闭的 ⇔ \Lrarr Y Y Y是完备的. L p , l p L^p, l^p Lp,lp空间中,仅 p = 2 p=2 p=2是内积空间.

正交、正交分解

正交: x ⊥ y ⇔ ( x , y ) = 0 x \perp y \Lrarr (x, y) = 0 xy(x,y)=0

勾股定理: x ⊥ y ⇒ ∥ x + y ∥ 2 = ∥ x ∥ 2 + ∥ y ∥ 2 x\perp y \Rarr \|x + y\|^2 = \|x\|^2 + \|y\|^2 xyx+y2=x2+y2

点与集合正交: x ⊥ M = △ ∀ y ∈ M , x ⊥ y x\perp M \overset\triangle = \forall y \in M, x\perp y xM=yM,xy

集合与集合正交: M ⊥ N = △ ∀ x ∈ M , y ∈ N , x ⊥ y M \perp N \overset\triangle = \forall x \in M, y \in N, x\perp y MN=xM,yN,xy

正交补集

M ⊆ X M\subseteq X MX, X X X中与 M M M中所有元素都正交的所有元素构成的集合
M ⊥ = { y ∈ X ∣ ∀ x ∈ M , ( x , y ) = 0 } M^\perp = \{y\in X | \forall x \in M, (x,y)=0\} M={yXxM,(x,y)=0}
性质:

  1. 0 ∈ M ⊥ 0 \in M^\perp 0M
  2. M ⊥ M^\perp M中的非 0 0 0元素不可能在 M M M
  3. { 0 } ⊥ = X , X ⊥ = { 0 } \{0\}^\perp = X, X^\perp = \{0\} {0}=X,X={0}
  4. 含开球的集合 M M M的正交补是 { 0 } \{0\} {0}
  5. N ⊆ M N\subseteq M NM, 则 M ⊥ ⊆ N ⊥ M^\perp \subseteq N^\perp MN
  6. M ⊆ M ⊥ M \subseteq M^{\perp} MM

X X X是内积空间, M ⊆ X M \subseteq X MX, 则 M ⊥ M^{\perp} M X X X的闭子空间.

M M M是内积空间, M M M X X X的子空间,则 x ∈ M ⊥ x \in M^{\perp} xM等价于 ∀ y ∈ M ∥ x − y ∥ ≥ x \forall y \in M \|x - y\| \geq x yMxyx

最佳逼近

内积空间是严格凸的赋范空间.

严格凸的空间上, 凸集与其外一点的最佳逼近点存在且唯一.

Hilbert 空间最佳逼近点

正交分解: H H H是Hilbert空间, M M M H H H的闭子空间, 则 ∀ x ∈ H , ∃ ! x 0 ∈ M , y ∈ M ⊥ , x = x 0 + y \forall x \in H, \exists ! x_0 \in M, y \in M^{\perp}, x = x_0 + y xH,!x0M,yM,x=x0+y

Hilbert空间 H H H中任意线性子空间 X X X满足: ( X ⊥ ) ⊥ = X (X ^\perp) ^\perp = X (X)=X, 由此可推出

  1. Hilbert空间 H H H中任意线性子空间 X X X满足: ( X ⊥ ) ⊥ = X ‾ (X ^\perp) ^\perp = \overline X (X)=X
  2. X ⊥ = 0 ⇔ X X ^\perp = 0 \Lrarr X X=0X H H H中稠密.

正交系、标准正交系

{ x α } α ∈ I \{x_\alpha\}_{\alpha \in I} {xα}αI是内积空间中非0元素组成的集合,且在 α ≠ β \alpha \neq \beta α=β时, ( x α , x β ) = 0 (x_\alpha, x_\beta) = 0 (xα,xβ)=0, 则 { x α } α ∈ I \{x_\alpha\}_{\alpha \in I} {xα}αI是一个正交系.

∀ α ∈ I , ∥ x α ∥ = 1 \forall \alpha \in I, \|x_\alpha\| = 1 αI,xα=1则成为标准正交系.

标准正交系张成的空间中 x = ∑ n ( x , e n ) e n x = \sum_{n} (x, e_n) e_n x=n(x,en)en, 其线性组合系数易于表示.

如果 { x α } α ∈ I \{x_\alpha\}_{\alpha \in I} {xα}αI是内积空间的正交系, 则它是线性无关的.

内积空间中, 正交基不唯一.

{ e k } \{e_k\} {ek}是内积空间 X X X上的标准正交系, x ∈ X x\in X xX, a 1 , ⋯   , a n a_1, \cdots, a_n a1,,an n n n个数. 则 ∥ x − ∑ k = 1 n a k e k ∥ \|x - \sum_{k=1}^n a_ke_k\| xk=1nakek取得最小值 ⇔ ∀ k , a k = ( x , e k ) \Leftrightarrow \forall k, a_k = (x, e_k) k,ak=(x,ek)

Fourier级数

从微积分中的Fourier正余弦级数得到.

定义: { e n } n = 1 ∞ \{e_n\}_{n=1}^\infty {en}n=1是内积空间中正交系, 称 ∑ n = 1 ∞ ( x , e n ) e n \sum_{n=1}^\infty (x, e_n) e_n n=1(x,en)en为关于 { e n } \{e_n\} {en}的Fourier级数, ( x , e n ) (x, e_n) (x,en)为Fourier系数.

Bessel 不等式: { e k } k = 1 ∞ \{e_k\}_{k=1}^\infty {ek}k=1是内积空间 X X X的标准正交列, 则 ∀ x ∈ X \forall x\in X xX, ∑ k = 1 ∞ ∣ ( x , e k ) ∣ 2 ≤ ∥ x ∥ 2 \sum_{k=1}^\infty |(x, e_k)|^2 \leq \|x\|^2 k=1(x,ek)2x2

由 Bessel 不等式, Fourier 级数一定是收敛的, 从而在 n → ∞ n\rarr \infty n ( x , e n ) → 0 (x, e_n) \to 0 (x,en)0, 由此可推出 Fourier 三角级数的 Riemann-Lebesgue 引理.

∫ − π π x ( t ) sin ⁡ ( t ) d t → n → ∞ 0 \int_{-\pi}^{\pi} x(t) \sin(t) \mathrm{d}t \xrightarrow{n\to \infty} 0 ππx(t)sin(t)dtn 0

在完备的Hilbert空间中, ∑ n = 1 ∞ a k e n \sum_{n=1}^\infty a_k e_n n=1aken收敛 ⇔ ∑ k ∣ a k ∣ 2 < ∞ ⇔ { α n } n = 1 ∞ ∈ l 2 \Lrarr \sum_k |a_k|^2 < \infty \Lrarr \{\alpha_n\}_{n=1}^\infty \in l^2 kak2<{αn}n=1l2, 有

∑ n = 1 ∞ a k e n ≤ ∑ n = 1 ∞ ∣ a k ∣ 2 \sum_{n=1}^\infty a_k e_n \leq \sum_{n=1}^\infty |a_k|^2 n=1akenn=1ak2

从而 Fourier 级数总是收敛的, 并且收敛是按范数收敛

正交基

正交基: 所张成空间在全空间稠密的正交基:

s p a n ‾ { x α } = X \overline{\mathrm{span}}\{x_{\alpha}\} = X span{xα}=X

内积空间中, Parseval 等式: ∑ k = 1 ∞ ∣ ( x , e k ) ∣ 2 = ∥ x ∥ 2 \sum_{k=1}^\infty |(x, e_k)|^2 = \|x\|^2 k=1(x,ek)2=x2空间中所有元素成立的正交基 = △ \overset \triangle = =完备的正交基.

Hilbert 空间中的正交基完备性

Hilbert 空间 H H H 中的正交基完备的等价描述

  1. { e n } ⊥ = { 0 } \{e_n\}^\perp = \{0\} {en}={0}
  2. ∀ x ∈ H , x = ∑ k = 1 ∞ ( x , e k ) e k \forall x \in H, x = \sum_{k=1}^\infty (x, e_k) e_k xH,x=k=1(x,ek)ek (Fourier 级数收敛)
  3. s p a n ‾ { x α } = H \overline{\mathrm{span}}\{x_{\alpha}\} = H span{xα}=H
  4. ∀ x ∈ H , ∥ x ∥ 2 = ∑ n = 1 ∞ ∣ ( x , e n ) ∣ 2 \forall x \in H, \|x\|^2 = \sum_{n=1}^\infty |(x, e_n)|^2 xH,x2=n=1(x,en)2

其中第1条和第3条通常容易验证一些.

完备例: 三角多项式、Legendre 多项式

一个 Hilbert 空间可有多组正交基.

可分 Hilbert 空间

Hilbert 空间 H H H 可分 ⇔ \Leftrightarrow H H H有至多可数的正交基.

可分的 Hilbert 空间 H H H 同构于 K N ( N < ∞ ) \mathbb K^N (N < \infty) KN(N<) l 2 ( N = ∞ ) l^2 (N = \infty) l2(N=)

泛函分析(各空间特点总结)

R n \R^n Rn

R n = { ( x 1 , x 2 , ⋯   , x n ) ∣ x i ∈ R } \R ^ n = \{(x_1, x_2, \cdots, x_n) | x_i \in \R\} Rn={(x1,x2,,xn)xiR}, d ( x , y ) d(x, y) d(x,y)可定义为欧式距离、哈密顿距离等.

R n \R^n Rn中按欧式距离收敛 ≡ \equiv 按坐标收敛.

完备

C [ a , b ] C[a, b] C[a,b]

C [ a , b ] C[a, b] C[a,b]: 所有在 [ a , b ] [a, b] [a,b]区间上连续的函数, 定义一致距离

d ( x , y ) = max ⁡ a ≤ t ≤ b ∣ x ( t ) − y ( t ) ∣ d(x, y) = \max_{a \leq t\leq b} |x(t) - y(t)| d(x,y)=atbmaxx(t)y(t)
C [ a , b ] C[a, b] C[a,b]中的收敛 ≡ \equiv 一致收敛

是可分空间

列紧集: 一致有界且等度连续(Arzela定理)

完备

范数定义是
∥ x ∥ = max ⁡ a ≤ t ≤ b ∣ x ( t ) ∣ \|x\| = \max_{a \leq t \leq b} |x(t)| x=atbmaxx(t)
诱导出一致距离.

l ∞ l^\infty l

l ∞ = { x = ( ξ 1 , ξ 2 , ⋯   , ξ n , ⋯   ) , ∣ ξ n ∣ ≤ c x } l^\infty= \{x = (\xi_1, \xi_2, \cdots, \xi_n, \cdots), |\xi_n| \leq c_x\} l={x=(ξ1,ξ2,,ξn,),ξncx}: 所有有界实数序列, 定义距离
d ( x , y ) = sup ⁡ j ∈ N ∗ ∣ ξ j − η j ∣ d(x, y) = \sup_{j\in \N^*} | \xi_j - \eta_j| d(x,y)=jNsupξjηj
不可分,不列紧,完备

是赋范空间, 范数
∥ x ∥ = sup ⁡ k ∣ ξ k ∣ \|x\| = \sup_k |\xi_k| x=ksupξk

s s s

s = { { ξ n } n = 1 ∞ ∣ ∀ i ∈ N , ξ n ∈ R } s = \{\{\xi_n\}_{n=1}^\infty | \forall i \in \N, \xi_n \in \R \} s={{ξn}n=1iN,ξnR}: 所有的实数列. 对 x = { ξ n } n = 1 ∞ x = \{\xi_n\}_{n=1}^{\infty} x={ξn}n=1 y = { η n } n = 1 ∞ y = \{\eta_n\}_{n=1}^{\infty} y={ηn}n=1定义距离
d ( x , y ) = ∑ n = 1 ∞ 1 2 n ∣ ξ n − η n ∣ 1 + ∣ ξ n − η n ∣ d(x, y) = \sum_{n=1}^\infty \frac{1}{2^n}\frac{|\xi_n - \eta_n|}{1 + |\xi_n - \eta_n|} d(x,y)=n=12n11+ξnηnξnηn
s s s中的收敛: 按坐标收敛.

可分

d d d不能定义范数

S [ E ] S[E] S[E]

S [ E ] S[E] S[E]是Lebesgue可测集 E E E上几乎处处有限的可测的函数, 其中 m E < ∞ {\rm m}E<\infty mE<, 定义
d ( x , y ) = ∫ E ∣ x ( t ) − y ( t ) ∣ 1 + ∣ x ( t ) − y ( t ) ∣ d(x, y) = \int_E \frac{|x(t)-y(t)|}{1+|x(t)-y(t)|} d(x,y)=E1+x(t)y(t)x(t)y(t)
S [ E ] S[E] S[E]中的收敛是依测度收敛.

L p L^p Lp空间

f ( x ) f(x) f(x) E E E上可测函数, 并且 1 ≤ p < ∞ 1 \leq p < \infty 1p<,
L p ( E ) = { f : E → R ∣ ∫ E ∣ f ( x ) ∣ p d x < ∞ } , ∥ x ∥ p = ( ∫ E ∣ x ( t ) ∣ p d t ) 1 p L^p(E) = \left\{f: E\to \R\Bigg|\int_E|f(x)|^p\mathrm{d}x< \infty\right\}, \quad \|x\|_p = \left(\int_E|x(t)|^p\mathrm d t\right)^{\frac{1}{p}} Lp(E)={f:EREf(x)pdx<},xp=(Ex(t)pdt)p1
三角不等式的导出

  1. Hoelder不等式: ∀ p , q > 0 , 1 / p + 1 / q = 1 \forall p, q > 0, 1/p+1/q = 1 p,q>0,1/p+1/q=1,
    ∫ E ∣ x ( t ) y ( t ) ∣ d t ≤ ( ∫ E ∣ x ( t ) ∣ p d t ) 1 p ( ∫ E ∣ x ( t ) ∣ q d t ) 1 q \int_E |x(t)y(t)|\mathrm{d}t \leq \left(\int_E |x(t)|^p\mathrm{d}t\right)^{\frac{1}{p}}\left(\int_E |x(t)|^q\mathrm{d}t\right)^{\frac{1}{q}} Ex(t)y(t)dt(Ex(t)pdt)p1(Ex(t)qdt)q1

  2. Minkowski不等式:
    ( ∫ E ∣ x ( t ) + y ( t ) ∣ p d t ) 1 p ≤ ( ∫ E ∣ x ( t ) ∣ p d t ) 1 p + ( ∫ E ∣ y ( t ) ∣ p d t ) 1 p \left(\int_E |x(t)+y(t)|^p\mathrm{d}t\right)^{\frac{1}{p}} \leq \left(\int_E |x(t)|^p\mathrm{d}t\right)^{\frac{1}{p}}+\left(\int_E |y(t)|^p\mathrm{d}t\right)^{\frac{1}{p}} (Ex(t)+y(t)pdt)p1(Ex(t)pdt)p1+(Ey(t)pdt)p1

完备(Banach),可分(有理系数多项式),连续函数在其上稠密

L ∞ ( E ) L^{\infty}(E) L(E)

除去一个测度为 0 0 0的集合外剩下部分有界的函数组成的空间
L ∞ ( E ) = { f : E → R ∣ inf ⁡ m E 0 = 0 sup ⁡ E \ E 0 ∣ x ( t ) ∣ } L^{\infty}(E) = \left\{f: E\to \R \Bigg| \inf_{\mathrm m E_0 = 0}\sup_{E\backslash{E_0}} |x(t)| \right\} L(E)={f:ERmE0=0infE\E0supx(t)}
范数定义为本性上确界
∥ x ∥ = inf ⁡ m E 0 = 0 sup ⁡ E \ E 0 ∣ x ( t ) ∣ = △ e s s sup ⁡ E ∣ x ( t ) ∣ \|x\| = \inf_{\mathrm m E_0 = 0}\sup_{E\backslash{E_0}} |x(t)| \overset \triangle =\mathrm{ess} \sup_E |x(t)| x=mE0=0infE\E0supx(t)=essEsupx(t)
完备(Banach), 不可分.

收敛性: 除去一个 0 0 0测度集之外处处收敛.

c , c 0 c, c_0 c,c0

c c c: 所有收敛的数列, 可分

c 0 c_0 c0: 所有收敛于 0 0 0的数列, 是 l ∞ l^\infty l的闭子空间, 可分

l 2 l^2 l2

l p l^p lp空间中 p = 2 p=2 p=2, 它是内积空间,且是Hilbert空间
( x , y ) = ∑ k = 1 ∞ x k y k ‾ (x, y) = \sum_{k=1}^\infty x_k \overline {y_k} (x,y)=k=1xkyk

L 2 L^2 L2

L p L^p Lp空间中 p = 2 p=2 p=2, 它是内积空间,且是Hilbert空间
( x , y ) = ∫ E x ( t ) y ( t ) ‾ d t (x, y) = \int_{E} x(t)\overline{y(t)} \mathrm{d} t (x,y)=Ex(t)y(t)dt
诱导范数
∥ x ∥ = ∫ E ∣ x ( t ) ∣ 2 d t \|x\| = \int_{E} |x(t)|^2\mathrm{d}t x=Ex(t)2dt

  • 23
    点赞
  • 137
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值