抽象代数 04.05 群的直积

http://www.icourses.cn 南开大学《抽象代数》

§4.5 群的直积 {\color{blue}{\text{\S4.5 群的直积}}} §4.5 群的直积

例 4.5.1 回 顾 线 性 空 间 的 定 义 , 子 空 间 , 商 空 间 , 补 子 空 间 , 不 变 子 空 间 。 {\color{blue}例4.5.1\quad} 回顾线性空间的定义,子空间,商空间,补子空间,不变子空间。 4.5.1线

群G正规子群NA商群G/NB
数域 P \mathbb{P} P上线性空间V子空间W商空间V/W
G = { 1 , a , a 2 , a 3 } G=\lbrace 1, a, a^2, a^3\rbrace G={1,a,a2,a3}为四阶循环群 { 1 , a 2 } \lbrace 1, a^2\rbrace {1,a2} Z 2 \mathbb{Z_2} Z2 { 1 ˉ , a ˉ } \lbrace \bar 1, \bar a\rbrace {1ˉ,aˉ} Z 2 \Z_2 Z2
K 4 = { 1 , a , b , c ∣ a 2 = b 2 = c 2 = 1 , a b = c } K_4=\lbrace 1, a, b, c \vert a^2 = b^2 =c^2 = 1, ab = c \rbrace K4={1,a,b,ca2=b2=c2=1,ab=c} { 1 , a } \lbrace 1, a \rbrace {1,a} Z 2 \Z_2 Z2 { 1 ˉ , b ˉ } \lbrace \bar 1, \bar b \rbrace {1ˉ,bˉ} Z 2 \Z_2 Z2
S 3 S_3 S3 A 3 A_3 A3 Z 3 \Z_3 Z3 S 3 / A 3 S_3/A_3 S3/A3 Z 2 \Z_2 Z2
Z \Z Z 2 Z 2\Z 2Z Z \Z Z Z / 2 Z \Z/2\Z Z/2Z Z 2 \Z_2 Z2
O ( n ) O(n) O(n) S O ( n ) SO(n) SO(n) O ( n ) / S O ( n ) O(n)/SO(n) O(n)/SO(n) Z 2 \Z_2 Z2

定 义 4.5.2. 设 A , B , G 都 是 群 , 若 存 在 N ⊲ G 使 得 N ≅ A , G / N ≅ B , 则 称 G 是 B 过 A 的 扩 张 , 称 N 为 扩 张 核 。 {\color{blue}定义4.5.2.}设A,B,G都是群,若存在N \lhd G使得N \cong A, G/N \cong B,则称G是B过A的{\color{blue}扩张},称N为{\color{blue}扩张核}。 4.5.2.A,B,GNG使NA,G/NB,GBAN
上 述 定 义 , 存 在 群 同 态 λ : A → ( 单 ) 和 μ : G → B ( 满 ) , 即 有 群 和 群 同 态 的 序 列 上述定义,存在群同态\lambda: A \to (单)和\mu:G \to B(满),即有群和群同态的序列 λ:A()μ:GB(),
A ⟶ λ ( 单 ) G ⟶ μ ( 满 ) B , \qquad A \overset{\lambda(单)}{\longrightarrow} G \overset{\mu(满)}{\longrightarrow}B, Aλ()Gμ()B,
并 且 I m ( λ ) = λ ( A ) = N = K e r    μ ( 称 序 列 在 G 处 正 合 ) . 并且\mathrm{Im}(\lambda) = \lambda(A) = N = \mathrm{Ker} \; \mu (称序列在G处正合). Im(λ)=λ(A)=N=Kerμ(G).
定 义 4.5.3. ( 等 价 定 义 ) . 称 群 及 群 同 态 构 成 的 序 列 {\color{blue}定义4.5.3.}(等价定义).称群及群同态构成的序列 4.5.3.().
1 ⟶ i A ⟶ λ G ⟶ μ B ⟶ 0 1 ( 5.1 ) \qquad 1 \overset{i}{\longrightarrow} A \overset{\lambda}{\longrightarrow} G \overset{\mu}{\longrightarrow} B \overset{0}{\longrightarrow} 1 \qquad(5.1) 1iAλGμB01(5.1)
为 短 正 合 序 列 , 为{\color{blue}短正合序列},
如 果 前 一 个 群 同 态 恰 为 后 一 个 群 同 态 的 核 , 即 该 序 列 在 A , G , B 处 正 合 。 如果前一个群同态恰为后一个群同态的核,即该序列在A,G,B处正合。 A,G,B
引 理 4.5.4. 设 A , B , G 为 群 , 则 G 是 B 过 A 的 扩 张 当 且 仅 当 存 在 短 正 合 序 列 ( 5.1 ) 。 {\color{blue}引理4.5.4.}设A,B,G为群,则G是B过A的扩张当且仅当存在短正合序列(5.1)。 4.5.4.A,B,G,GBA(5.1)
注 记 4.5.5. 类 似 于 群 作 用 与 群 同 态 的 关 系 。 扩 张 和 短 正 合 序 列 也 是 同 一 个 事 物 的 {\color{blue}注记4.5.5.}类似于群作用与群同态的关系。扩张和短正合序列也是同一个事物的 4.5.5.
不 同 描 述 。 类 似 于 群 作 用 的 研 究 , 我 们 需 要 研 究 不 同 的 扩 张 或 短 正 合 序 列 的 关 系 。 不同描述。类似于群作用的研究,我们需要研究不同的扩张或短正合序列的关系。
定 理 4.5.6. 设 A , B , G , G ′ 是 群 。 {\color{blue}定理4.5.6.}设A,B,G,G^{\prime}是群。 4.5.6.A,B,G,G
1 ) 若 G 是 B 过 A 的 扩 张 , G ≅ G ′ , 则 G ′ 也 是 B 过 A 的 扩 张 。 1)若G是B过A的扩张,G\cong G^{\prime},则G^{\prime}也是B过A的扩张。 1)GBAGG,GBA
2 ) 若 G , G ′ 都 是 B 过 A 的 扩 张 , 有 群 同 态 f : G → G ′ 使 得 下 图 为 交 换 图 , 则 f 是 群 同 构 。 称 G 与 G ′ 是 B 过 A 的 等 价 扩 张 。 2)若G,G^{\prime}都是B过A的扩张,有群同态f:G\to G^{\prime}使得下图为交换图,则f是群同构。称G与G^{\prime}是B过A的{\color{blue}等价扩张}。 2)G,GBAf:GG使fGGBA
证 : 2 ) 需 要 证 明 f 是 单 射 也 是 满 射 。 证:2)需要证明f是单射也是满射。 :2)f
注 记 4.5.7. B 过 A 的 扩 张 得 到 的 群 的 同 构 类 的 全 体 与 B 过 A 的 扩 张 ( 或 短 正 合 序 列 ( 5.1 ) ) {\color{blue}注记4.5.7.}B过A的扩张得到的群的同构类的全体与B过A的扩张(或短正合序列(5.1)) 4.5.7.BABA((5.1))
的 等 价 类 的 全 体 一 一 对 应 。 的等价类的全体一一对应。
类 似 于 研 究 商 空 间 是 寻 求 补 子 空 间 , 我 们 有 如 下 命 题 : 类似于研究商空间是寻求补子空间,我们有如下命题: :
定 理 4.5.8. 设 G 是 B 过 A 的 扩 张 , N 为 扩 张 核 , 对 应 的 短 正 合 序 列 为 ( 5.1 ) 。 {\color{blue}定理4.5.8.}设G是B过A的扩张,N为扩张核,对应的短正合序列为(5.1)。 4.5.8.GBAN(5.1)
1 ) 若 有 H &lt; G 满 足 G = H N , H ∩ N = { 1 } , 则 μ ∣ H 是 H 到 B 上 的 同 构 , 此 时 v = ( μ ∣ H ) − 1 是 B 到 G 的 同 态 且 μ v = i d B . 1)若有H&lt;G满足G=HN,H \cap N = \lbrace 1 \rbrace,则\mu \vert _H是H到B上的同构,此时v=(\mu \vert _H)^{-1}是B到G的同态且\mu v = \mathrm{id}_B. 1)H<GG=HN,HN={1},μHHBv=(μH)1BGμv=idB.
2 ) 若 存 在 B 到 G 的 同 态 v 使 得 μ v = i d B , 则 H = v ( B ) &lt; G 且 G = H N , H ∩ N = { 1 } . 2)若存在B到G的同态v使得\mu v = \mathrm{id}_B,则H=v(B)&lt;G且G=HN,H\cap N = \lbrace 1 \rbrace. 2)BGv使μv=idB,H=v(B)<GG=HN,HN={1}.
定 义 4.5.9. 设 G 是 B 过 A 的 扩 张 , N 为 扩 张 核 , 对 应 的 短 正 合 序 列 为 ( 5.1 ) 。 {\color{blue}定义4.5.9.}设G是B过A的扩张,N为扩张核,对应的短正合序列为(5.1)。 4.5.9.GBAN(5.1)
若 有 H &lt; G 满 足 G = H N , H ∩ N = { 1 } , 则 称 此 扩 张 为 非 本 质 扩 张 ( 子 空 间 的 补 子 空 间 ) , 并 称 G 是 N 与 H 的 半 直 积 , 若有H&lt;G满足G=HN,H\cap N = \lbrace 1 \rbrace,则称此扩张为{\color{blue}非本质扩张}(子空间的补子空间),并称G是N与H的{\color{blue}半直积}, H<GG=HN,HN={1},(),GNH,
进 一 步 , 如 果 H ⊲ G , 则 称 此 扩 张 为 平 凡 扩 张 。 G 是 N 和 H 的 ( 内 ) 直 积 ( 记 为 G = H ⊗ N ) ( 不 变 子 空 间 的 不 变 补 子 空 间 ) 。 也 称 G 是 A 和 B 的 ( 外 ) 直 积 ( 记 为 G = A × B ) 。 进一步,如果H\lhd G,则称此扩张为{\color{blue}平凡扩张}。G是N和H的{\color{blue}(内)直积}(记为G=H\otimes N)(不变子空间的不变补子空间)。也称G是A和B的{\color{blue}(外)直积}(记为G=A \times B)。 HG,GNH()(G=HN)()GAB()(G=A×B)
如 果 N ⊂ C ( G ) , 则 称 此 扩 张 为 中 心 扩 张 。 如果N \sub C(G),则称此扩张为{\color{blue}中心扩张}。 NC(G),
例 4.5.10. 1 ) Z 是 Z 过 Z 2 的 扩 张 , 但 不 是 非 本 质 扩 张 。 {\color{blue}例4.5.10.}1)\Z是\Z过\Z_2的扩张,但不是非本质扩张。 4.5.10.1)ZZZ2
2 ) n ≥ 3 时 , S n 是 Z 2 过 A n 的 非 本 质 扩 张 。 2)n \geq 3时,S_n是\Z_2过A_n的非本质扩张。 2)n3SnZ2An
3 ) O ( n ) 是 Z 2 过 S O ( n ) 的 非 本 质 扩 张 。 3)O(n)是\Z_2过SO(n)的非本质扩张。 3)O(n)Z2SO(n)
4 ) 15 阶 群 是 Z 3 过 Z 5 的 平 凡 扩 张 。 4)15阶群是\Z_3过\Z_5的平凡扩张。 4)15Z3Z5
问 题 4.5.11. 上 述 非 本 质 扩 张 是 否 为 平 凡 扩 张 。 {\color{blue}问题4.5.11.}上述非本质扩张是否为平凡扩张。 4.5.11.
引 理 4.5.12. 设 A , B 是 G 的 子 群 。 G = A B 。 则 下 列 命 题 等 价 。 {\color{blue}引理4.5.12.}设A,B是G的子群。G=AB。则下列命题等价。 4.5.12.ABGG=AB
1 ) A ∩ B = { 1 } . 1)A \cap B=\lbrace 1 \rbrace. 1)AB={1}.
2 ) 任 意 g ∈ G , g 的 分 解 g = a b ( a ∈ A , b ∈ B ) 唯 一 。 2)任意g \in G,g的分解g=ab(a \in A, b \in B)唯一。 2)gG,gg=ab(aA,bB)
3 ) 幺 元 的 分 解 唯 一 。 3)幺元的分解唯一。 3)
定 理 4.5.13. 设 A , B 是 G 的 子 群 , G = A B , A ∩ B = { 1 } . 则 A , B 都 是 G 的 正 规 子 群 当 且 仅 当 对 任 意 a ∈ A , b ∈ B , a b = b a . {\color{blue}定理4.5.13.}设A,B是G的子群,G=AB,A\cap B = \lbrace 1 \rbrace.则A,B都是G的正规子群当且仅当对任意a \in A,b \in B,ab = ba. 4.5.13.ABGG=ABAB={1}.ABGaA,bB,ab=ba.
定 理 4.5.14. ( 直 积 的 存 在 唯 一 性 ) . 设 A , B 为 群 , {\color{blue}定理4.5.14.}(直积的存在唯一性).设A,B为群, 4.5.14.().AB
则 在 同 构 意 义 下 存 在 唯 一 B 过 A 的 平 凡 扩 张 G 。 则在同构意义下存在唯一B过A的平凡扩张G。 BAG
注 记 4.5.15. 类 似 于 分 块 矩 阵 。 {\color{blue}注记4.5.15.}类似于分块矩阵。 4.5.15.
证 : 存 在 性 。 在 G = A × B = { ( a , b ) ∣ a ∈ A , b ∈ B } 中 定 义 乘 法 并 验 证 G 是 群 。 证:存在性。在G=A \times B = \lbrace (a,b)|a \in A, b \in B \rbrace中定义乘法并验证G是群。 G=A×B={(a,b)aA,bB}G
则 A 1 = { ( a , 1 B ) ∣ a ∈ A } , B 1 = { ( 1 A , b ) ∣ b ∈ B } 都 是 G 的 正 规 子 群 且 G = A 1 ⊗ B 1 . 则A_1 = \lbrace (a, 1_B) | a \in A \rbrace, B_1 = \lbrace (1_A,b) | b \in B \rbrace 都是G的正规子群且G = A_1 \otimes B_1. A1={(a,1B)aA},B1={(1A,b)bB}GG=A1B1.
唯 一 性 。 G ′ = A ′ ⊗ B ′ , 且 A ≅ λ A ′ , B ≅ μ B ′ , 则 f : G → G ′ , f ( a , b ) = λ ( a ) μ ( b ) , 为 群 同 构 。 唯一性。G^{\prime} = A^{\prime} \otimes B^{\prime},且A \overset{\lambda}{\cong} A^{\prime}, B \overset{\mu}{\cong} B^{\prime},则f: G \to G^{\prime}, f(a, b) = \lambda(a)\mu(b),为群同构。 G=AB,AλA,BμB,f:GG,f(a,b)=λ(a)μ(b),
4.5.16 ( 对 称 群 S n ) . {\color{blue}4.5.16(对称群S_n).} 4.5.16(Sn).
1. S n 的 共 轭 类 于 n 的 划 分 、 幂 零 矩 阵 的 共 轭 类 、 Y o u n g 图 的 一 一 对 应 。 1.S_n的共轭类于n的划分、幂零矩阵的共轭类、Young图的一一对应。 1.SnnYoung
2. S n 的 正 规 子 群 和 商 群 2.S_n的正规子群和商群 2.Sn
n = 1 , 2 , \qquad n = 1, 2, n=1,2,
n = 3 , A 3 \qquad n = 3, A_3 n=3,A3
n = 4 , K 4 , A 4 . S 4 / K 4 ≅ S 3 . \qquad n = 4, K_4, A_4. S_4/K_4 \cong S_3. n=4,K4,A4.S4/K4S3.
n ≥ 5 , A 5 ( 5 次 以 上 方 程 不 可 根 式 解 ) . \qquad n \geq 5, A_5(5次以上方程不可根式解). n5,A5(5).
3. A u t ( S n ) = S n , C ( S n ) = { 1 } , n = ̸ 2 , 6. S 5 的 S y l o w 5 − 子 群 共 6 个 , S 5 → S 6 . 3.{\mathrm{Aut}(S_n)} = S_n, C(S_n) = \lbrace 1 \rbrace, n =\not 2, 6. S_5的Sylow 5-子群共6个,S_5 \to S_6. 3.Aut(Sn)=Sn,C(Sn)={1},n≠2,6.S5Sylow56S5S6.
4. S n 做 为 多 面 体 的 对 称 群 : 4.S_n做为多面体的对称群: 4.Sn:
S 3 正 三 角 形 。 \qquad S_3正三角形。 S3
S 4 正 四 面 体 、 立 方 体 。 \qquad S_4正四面体、立方体。 S4

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
TS GSM04.05,全称为GSM 04.05 Technical Specification,是一项主要应用于GSM(全球移动通信系统)中的协议标准。该协议规定了GSM系统中电话短消息(SMS)的传输协议和相关技术。 GSM04.05协议定义了GSM短信的结构和编码方式。它规定了短信的各个字段,例如发件人的电话号码、接收人的电话号码、短信内容等。同时,该协议还规定了短信的传输方式和相关的消息处理过程。 根据GSM04.05协议,短信被划分为两种类型:MO(Mobile Originating,即手机发出的短信)和MT(Mobile Terminating,即手机接收的短信)。协议指定了这两种短信的传输和处理方式。 在GSM系统中,短信传输是通过短信服务中心(SMSC)进行的。MO短信首先通过手机发送给SMSC,然后SMSC负责将其传输给接收者的手机。而MT短信则是由SMSC将消息发送给目标手机。协议详细规定了这个过程中的各个步骤和相关的消息格式。 此外,GSM04.05协议还规定了短信中的编码方式。根据协议,短信可以使用7-bit GSM编码、8-bit二进制编码或UCS-2编码。这些编码方式对于短信内容中的不同字符集有不同的适用性。 总结而言,GSM04.05协议是一项关于GSM系统中短信传输的技术规范。它定义了短信的结构、编码方式以及传输和处理过程。该协议为GSM系统中的短信服务提供了统一的标准,使得不同手机厂商和网络运营商的设备和系统能够互相兼容和交互。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值