群同态基本定理证明_4. 群直积与有限Abel群的分类

本文探讨群的直积,特别是有限Abel群的分类,介绍了外直积与内直积,以及它们的关系。有限Abel群可以通过初等因子和不变因子进行分解,这种分解是唯一的。此外,文章提到了Cauchy定理和群的同构类,为理解有限Abel群的结构提供关键定理。
摘要由CSDN通过智能技术生成

前言

  1. 本章内容如果不考虑定理的证明,则较容易理解,主要包括群直积与有限Abel群的分类问题。下一章将介绍几种重要的群,包括置换群、单群、可解群、自同构群、自由群。
  2. 在前述内容中已经学过了两个集合的笛卡尔积和积集,将其定义乘法之后将分别得到群的外直积和内直积,本章首先将其推广到多个群的情况,并探究外直积与内直积的关系。然后给出有限p群和有限Abel群的一些基本定理,以及有限Abel群的初等因子与不变因子。
  3. 在有些学校本科近世代数中,本章内容不属于其课程范围内。但本章内容对于理解群的结构有重要的作用。

4.1 群的直积

群的外直积
是群。群的
外直积(external direct product)是它们的笛卡尔积
,其乘法为
对于
,外直积又称为直积。

可以证明,外直积关于如上规定的运算构成群,其单位元为

,其中
是每个群的单位元。“外直积”一词中的外字表示这些群
并不是外直积的子群,外直积的运算也是额外规定的。外直积的性质基本都由每个群决定,例如群的外直积是Abel群当且仅当这些群都是Abel群。外直积的阶数等于群的阶数之积。另外,我们会自然地想到外直积的一个子群
同构于群
外直积的性质
在上述定义的基础上,记
,则

(1)
,且

(2)

(3)

(4)
时,
中的元素可交换。

从积集的定义出发,并满足一些条件,可以得到内直积。内直积的一个例子是线性空间中的直和分解。对于有限多个群,内直积就是内直和

群的内直积
是群,
的子群,那么满足以下条件时称
内直积(internal direct product):
(1)

(2)

(3)

特别地,

是正规子群
的内直积当且仅当
。内直积的定义中,内体现在直积的成分是内直积的子群。例如,设
的两个正规子群
,读者可以验证,
的内直和,可以记作
。下面是一些基本事实。
事实:如果群
的两个正规子群
满足
,则对于
,有

只要证明

即可。
内直和的等价条件
,则下列条件等价

(1)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值