群的直积

对于四阶群:一定存在二阶子群二阶子群一定是正规子群,然后做四阶模二阶的商群的分类,就得到了一个商群

z / 2 z = z 2 z/2z=z_{2} z/2z=z2

S 3 / A 3 ≃ z 2 S_{3}/A_{3} \simeq z_{2} S3/A3z2

O ( n ) / S O ( n ) ≃ z 2 , 正 交 矩 阵 行 列 式 ± 1 , 特 殊 正 交 矩 阵 行 列 式 + 1 O(n)/SO(n) \simeq z_{2} , 正交矩阵行列式\pm 1,特殊正交矩阵行列式+1 O(n)/SO(n)z2,±1+1

找非平凡正规子群再做商群
大群可由小群拼出来吗?一组小群能拼几个?

群的直积:

给定ABG,若存在G的正规子群N
N同构A     商群G/N同构B
称G为B通过A的扩张
N称为扩张核

其中A到N到G是单射,G到G比N,G比N到G这是自然同态,满射。

随便找一个A到G单,G到B满,也不行,观察条件还有个N没用呢
在这里插入图片描述

这是我们称 在G正合 (核象,象核相等)
两个映射的符合是 将A应成单位元
(更深层次可见同调理论)


更进一步由于:
单射的核是一,构造并添加{1}->A, B->{1}    
可构造短正合序列

对于群直积,用两种语言说了同一种事。
和群作用与群同态一样都是一件事


在这里插入图片描述

若两个G G’同构:则G’也是扩张
另外如果两个B过A的扩张G G’有群同态,当作用的图交换时是群同构(顺着箭头)。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
要证明子群的交是子群,需要证明以下三个条件: 1. 恒等元素在交集中。 设 G 是一个群,H1 和 H2 是 G 的两个子群。由于 H1 和 H2 都是 G 的子群,它们都包含 G 的恒等元素 e。因此,H1 ∩ H2 至少包含元素 e。 2. 任意两个元素的在交集中。 设 x 和 y 都在 H1 ∩ H2 中,即它们同时在 H1 和 H2 中。则 x 和 y 的 xy 也在 H1 和 H2 中,因此它也在 H1 ∩ H2 中。 3. 任意元素的逆元素在交集中。 设 x 在 H1 ∩ H2 中,则 x 同时在 H1 和 H2 中,因此 x 的逆元素 x^-1 也在 H1 和 H2 中,因此它也在 H1 ∩ H2 中。 综上所述,H1 ∩ H2 是 G 的子群。 要证明子群的并也是子群,可以利用对称差分解的方法。对称差分解指的是:对于两个集合 A 和 B,它们的对称差定义为 (A-B) ∪ (B-A),即不属于 A 和 B 的元素的集合。可以将 A 和 B 分解为它们的交集和对称差,即 A = (A ∩ B) ∪ (A-B) 和 B = (A ∩ B) ∪ (B-A)。因为子群必须包含恒等元素,所以可以假设 H1 和 H2 都包含 G 的恒等元素 e。 因此,H1 ∪ H2 可以表示为 (H1 ∩ H2) ∪ (H1-H2) ∪ (H2-H1)。由于 H1 和 H2 都是 G 的子群,因此它们都包含 G 的恒等元素 e。因此,H1 ∩ H2 至少包含元素 e。另外,如果 x 和 y 都在 H1 ∪ H2 中,则它们分别在 H1 和 H2 中,或者至少有一个在 H1 ∩ H2 中。如果它们都在 H1 和 H2 中,则它们的 xy 也在 H1 和 H2 中,因此它也在 H1 ∪ H2 中。如果至少有一个在 H1 ∩ H2 中,则它们的 xy 也在 H1 ∩ H2 中,因此它也在 H1 ∪ H2 中。另外,如果 x 在 H1 ∪ H2 中,则它分别在 H1 和 H2 中,或者它在 H1 ∩ H2 中。如果它在 H1 ∩ H2 中,则它的逆元素 x^-1 也在 H1 ∩ H2 中,因此它也在 H1 ∪ H2 中。如果它在 H1 或 H2 中,则它的逆元素 x^-1 也在 H1 或 H2 中,因此它也在 H1 ∪ H2 中。 综上所述,H1 ∪ H2 是 G 的子群。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值