对于四阶群:一定存在二阶子群二阶子群一定是正规子群,然后做四阶模二阶的商群的分类,就得到了一个商群
z / 2 z = z 2 z/2z=z_{2} z/2z=z2
S 3 / A 3 ≃ z 2 S_{3}/A_{3} \simeq z_{2} S3/A3≃z2
O ( n ) / S O ( n ) ≃ z 2 , 正 交 矩 阵 行 列 式 ± 1 , 特 殊 正 交 矩 阵 行 列 式 + 1 O(n)/SO(n) \simeq z_{2} , 正交矩阵行列式\pm 1,特殊正交矩阵行列式+1 O(n)/SO(n)≃z2,正交矩阵行列式±1,特殊正交矩阵行列式+1
找非平凡正规子群再做商群
大群可由小群拼出来吗?一组小群能拼几个?
群的直积:
给定ABG,若存在G的正规子群N
N同构A 商群G/N同构B
称G为B通过A的扩张
N称为扩张核
其中A到N到G是单射,G到G比N,G比N到G这是自然同态,满射。
随便找一个A到G单,G到B满,也不行,观察条件还有个N没用呢
这是我们称 在G正合 (核象,象核相等)
两个映射的符合是 将A应成单位元
(更深层次可见同调理论)
更进一步由于:
单射的核是一,构造并添加{1}->A, B->{1}
可构造短正合序列
对于群直积,用两种语言说了同一种事。
和群作用与群同态一样都是一件事
若两个G G’同构:则G’也是扩张
另外如果两个B过A的扩张G G’有群同态,当作用的图交换时是群同构(顺着箭头)。