抽象代数 04.08 自由幺半群与自由群

§4.8 自由幺半群与自由群 {\color{blue}{\text{\S 4.8 自由幺半群与自由群}}} §4.8 自由幺半群与自由群

自由幺半群与自由群的思想不仅在群论中,而且在其它数学分支中都是重要的。
设 X = { a 1 , a 2 , ⋯   , a n } 是 一 个 集 合 , 称 X 中 任 一 有 限 长 度 的 序 列 设X=\lbrace a_1, a_2, \cdots, a_n \rbrace是一个集合,称X中任一有限长度的序列 X={a1,a2,,an}X
x 1 x 2 ⋯ x i ( x 1 , x 2 , ⋯   , x i ∈ X ) \qquad x_1x_2 \cdots x_i(x_1,x_2,\cdots,x_i \in X) x1x2xi(x1,x2,,xiX)
为 一 个 字 . 当 i = 0 时 , 称 为 空 字 , 记 为 ∧ . 记 所 有 字 的 集 合 为 X ~ . 在 X ~ 上 定 义 乘 法 为一个{\color{blue}字}.当i = 0时,称为{\color{blue}空字},记为\land.记所有字的集合为\tilde{X}.在\tilde{X}上定义乘法 .i=0,,.X~.X~
( x 1 x 2 ⋯ x i ) ( y 1 y 2 ⋯ y j ) = x 1 x 2 ⋯ x i y 1 y 2 ⋯ y j \qquad (x_1x_2\cdots x_i)(y_1y_2\cdots y_j)=x_1x_2\cdots x_iy_1y_2\cdots y_j (x1x2xi)(y1y2yj)=x1x2xiy1y2yj
显 然 X ~ 对 此 乘 法 是 以 ∧ 为 幺 元 的 幺 半 群 。 这 个 幺 半 群 称 为 由 X 生 成 的 自 由 幺 半 群 . 显然\tilde{X}对此乘法是以\land为幺元的幺半群。这个幺半群称为由X生成的{\color{blue}自由幺半群}. X~X.
定 理 4.8.1. 设 集 合 X 非 空 , S 是 幺 半 群 , f 是 X 到 S 的 映 射 . 则 存 在 唯 一 的 X ~ 到 S 的 同 态 ϕ , 使 {\color{blue}定理4.8.1.}设集合X非空,S是幺半群,f是X到S的映射.则存在唯一的\tilde{X}到S的同态\phi,使 4.8.1.X,S,fXS.X~Sϕ,使
ϕ ( x ) = f ( x ) , ∀ x ∈ X . \qquad \phi(x) = f(x), \forall x \in X. ϕ(x)=f(x),xX.
证 定 义 X ~ 到 S 的 映 射 ϕ : ϕ ( ∧ ) = e , e 为 S 的 幺 元 . {\color{blue}证}定义\tilde{X}到S的映射\phi:\phi(\land)=e,e为S的幺元. X~Sϕ:ϕ()=e,eS.
ϕ ( x 1 x 2 ⋯ x i ) = f ( x 1 ) f ( x 2 ) ⋯ f ( x i ) , 则 ϕ 显 然 为 同 态 . \phi(x_1x_2\cdots x_i)=f(x_1)f(x_2)\cdots f(x_i),则\phi显然为同态. ϕ(x1x2xi)=f(x1)f(x2)f(xi),ϕ.
若 ψ 为 X ~ 到 S 的 同 态 , 且 ψ ( x ) = f ( x ) , 则 若\psi为\tilde{X}到S的同态,且\psi(x)=f(x),则 ψX~S,ψ(x)=f(x),
ψ ( x 1 x 2 ⋯ x i ) = ψ ( x 1 ) ψ ( x 2 ) ⋯ ψ ( x i ) \quad \psi(x_1x_2\cdots x_i) = \psi(x_1)\psi(x_2)\cdots \psi(x_i) ψ(x1x2xi)=ψ(x1)ψ(x2)ψ(xi)
= f ( x 1 ) f ( x 2 ) ⋯ f ( x i ) = ϕ ( x 1 x 2 ⋯ x i ) . \quad = f(x_1)f(x_2)\cdots f(x_i) = \phi(x_1x_2\cdots x_i). =f(x1)f(x2)f(xi)=ϕ(x1x2xi).
即 ϕ 唯 一 . 即\phi唯一. ϕ.
设 集 合 X = { a 1 , a 2 , ⋯   , a n } , 再 令 集 合 X ′ = { a 1 ′ , a 2 ′ , ⋯   , a n ′ } , X ∩ X ′ = ∅ . 设集合X = \lbrace a_1, a_2, \cdots, a_n \rbrace,再令集合X^{\prime}=\lbrace a_1^{\prime},a_2^{\prime},\cdots,a_n^{\prime} \rbrace, X \cap X^{\prime}=\empty. X={a1,a2,,an},X={a1,a2,,an},XX=.
又 a i → a i ′ 是 X 到 X ′ 上 的 一 一 对 应 . 令 X ∗ = X ∪ X ′ , 设 有 x ∈ X ∗ , 我 们 定 义 x ′ : 又a_i \to a_i^{\prime}是X到X^{\prime}上的一一对应.令X^{*}=X \cup X^{\prime},设有x \in X^{*},我们定义x^{\prime}: aiaiXX.X=XX,xX,x:
x ′ = { a i , 当 x = a i ′ ; a i ′ , 当 x = a i . ( 1 ) \quad x^{\prime}= \left \{ \begin{array}{l}a_i, 当x = a_i^{\prime}; \\ a_i^{\prime}, 当x = a_i. \end{array} \right. (1) x={ai,x=ai;ai,x=ai.(1)
并 且 记 X ∗ 生 成 的 自 由 幺 半 群 为 X ∗ ~ . 并且记X^{*}生成的自由幺半群为\tilde{X^{*}}. XX~.
设 w 1 , w 2 ∈ X ∗ ~ , 且 ∃ g , h ∈ X ∗ ~ , x ∈ X ∗ ~ 使 w 1 = g h , w 2 = g x x ′ h , 设w_1,w_2 \in \tilde{X^{*}},且\exists g, h \in \tilde{X^{*}},x \in \tilde{X^{*}}使w_1 = gh, w_2 = gxx^{\prime}h, w1,w2X~,g,hX~,xX~使w1=gh,w2=gxxh,
或 w 1 = g x x ′ h , w 2 = g h , 则 称 w 1 与 w 2 是 相 邻 的 。 或w_1=gxx^{\prime}h,w_2=gh,则称w_1与w_2是{\color{blue}相邻的}。 w1=gxxh,w2=gh,w1w2
定 理 4.8.2. X ∗ ~ 如 上 所 述 , 在 X ∗ ~ 中 定 义 关 系 ∼ : w 1 ∼ w 2 , w 1 , w 2 ∈ X ∗ ~ 且 存 在 X ∗ ~ 中 序 列 w 1 = v 1 , v 2 , ⋯   , v l = w 2 , 满 足 v i 与 v i + 1 相 邻 , 则 ∼ 是 同 余 关 系 , 且 X ∗ ~ 对 于 ∼ 的 商 幺 半 群 X ∗ ~ / ∼ = F ( X ) 是 群 ( 称 为 由 X 生 成 的 自 由 群 ) . {\color{blue}定理4.8.2.}\tilde{X^{*}}如上所述,在\tilde{X^{*}}中定义关系\sim:w_1 \sim w_2,w_1,w_2 \in \tilde{X^{*}}且存在\tilde{X^{*}}中序列w_1=v_1,v_2,\cdots, v_l = w_2,满足v_i与v_{i+1}相邻,则\sim 是同余关系,且\tilde{X^{*}}对于\sim 的商幺半群\tilde{X^{*}}/ \sim = F(X)是群(称为{\color{blue}由X生成的自由群}). 4.8.2.X~,X~:w1w2,w1,w2X~X~w1=v1,v2,,vl=w2,vivi+1,,X~X~/=F(X)(X).
证 首 先 证 ∼ 是 等 价 关 系 . {\color{blue}证}首先证\sim是等价关系. .
∀ w ∈ X ∗ ~ , 取 v 1 = w , v 2 = w a 1 a 1 ′ , v 3 = w . 于 是 v 1 与 v 2 相 邻 , v 2 与 v 3 相 邻 , 故 有 w ∼ w . \forall w \in \tilde{X^{*}},取v_1=w,v_2=wa_1a_1^{\prime},v_3=w.于是v_1与v_2相邻,v_2与v_3相邻,故有w \sim w. wX~,v1=w,v2=wa1a1,v3=w.v1v2v2v3ww.
又 若 w 1 = v 1 , v 2 , ⋯   , v l = w 2 , 且 v i 与 v i + 1 相 邻 . 令 u i = v l − i + 1 , 则 u 1 = w 2 , u 2 , ⋯   , u l = w 1 , 且 u i 与 u i + 1 相 邻 . 即 从 w 1 ∼ w 2 得 到 w 2 ∼ w 1 . 又若w_1=v_1,v_2,\cdots, v_l=w_2,且v_i与v_{i+1}相邻.令u_i=v_{l-i+1},则u_1=w_2,u_2,\cdots,u_l=w_1,且u_i与u_{i+1}相邻.即从w_1\sim w_2得到w_2 \sim w_1. w1=v1,v2,,vl=w2,vivi+1.ui=vli+1,u1=w2,u2,,ul=w1,uiui+1.w1w2w2w1.
再 设 w 1 ∼ w 2 , w 2 ∼ w 3 , 于 是 存 在 一 些 序 列 : 再设w_1 \sim w_2,w_2 \sim w_3,于是存在一些序列: w1w2,w2w3,:
w 1 = v 1 , v 2 , ⋯   , v l = w 2 , v i 与 v i + 1 相 邻 ; w_1=v_1,v_2,\cdots, v_l = w_2,v_i与v_{i+1}相邻; w1=v1,v2,,vl=w2,vivi+1;
w 2 = u 1 , u 2 , ⋯   , u m = w 3 , 且 u j 与 u j + 1 相 邻 . w_2=u_1,u_2,\cdots,u_m=w_3,且u_j与u_{j+1}相邻. w2=u1,u2,,um=w3,ujuj+1.
因 而 , w 1 = v 1 , v 2 , ⋯   , v l = u 1 , u 2 , ⋯   , u m = w 3 为 所 求 序 列 , 故 w 1 ∼ w 3 . 因而,w_1=v_1,v_2,\cdots,v_l=u_1,u_2,\cdots,u_m=w_3为所求序列,故w_1\sim w_3. ,w1=v1,v2,,vl=u1,u2,,um=w3w1w3.
再 证 ∼ 为 同 余 关 系 . 注 意 到 . 若 u 1 与 u 2 相 邻 , 则 对 任 何 v 有 u 1 v 与 u 2 v 相 邻 , 再证\sim为同余关系.注意到.若u_1与u_2相邻,则对任何v有u_1v与u_2v相邻, ..u1u2,vu1vu2v,
v u 1 与 v u 2 相 邻 . 设 w 1 ∼ w 2 , u 1 ∼ u 2 , 则 由 序 列 vu_1与vu_2相邻.设w_1 \sim w_2,u_1 \sim u_2,则由序列 vu1vu2.w1w2,u1u2,
w 1 u 1 = v 1 u 1 , v 2 u 1 , ⋯   , v l u 1 = w 2 u 1 w_1u_1=v_1u_1,v_2u_1,\cdots,v_lu_1=w_2u_1 w1u1=v1u1,v2u1,,vlu1=w2u1
说 明 w 1 u 1 ∼ w 2 u 1 , 同 样 w 2 u 1 ∼ w 2 u 2 , 故 知 说明w_1u_1\sim w_2u_1,同样w_2u_1 \sim w_2u_2,故知 w1u1w2u1,w2u1w2u2,
w 1 u 1 ∼ w 2 u 2 , \qquad w_1u_1 \sim w_2u_2, w1u1w2u2,
即 ∼ 是 同 余 关 系 。 即\sim是同余关系。
最 后 , 证 明 商 幺 半 群 F ( X ) = X ∗ ~ / ∼ 是 群 , 只 需 证 明 F ( X ) 中 任 意 元 素 可 逆 . 最后,证明商幺半群F(X)=\tilde{X^{*}}/\sim是群,只需证明F(X)中任意元素可逆. F(X)=X~/F(X).
对 ∀ x ∈ X ∗ ~ , ∧ 为 空 字 , x ′ 如 式 ( 4.8.1 ) , 则 有 ∧ x x ′ ∧ = x x ′ , ∧ = ∧ ∧ . 即 x x ′ 与 ∧ 相 邻 . 对\forall x \in \tilde{X^{*}},\land为空字,x^{\prime}如式(4.8.1),则有\land xx^{\prime} \land=xx^{\prime},\land = \land \land.即xx^{\prime}与\land相邻. xX~,,x(4.8.1),xx=xx,=.xx.
因 而 ∧ ∼ x x ′ . 又 若 x 1 x 2 ⋯ x m ∈ X ∗ ~ , 则 有 x m ′ x m − 1 ′ ⋯ x 2 ′ ∈ X ∗ ~ , 且 因而\land \sim xx^{\prime}.又若x_1x_2\cdots x_m \in \tilde{X^{*}},则有x_m^{\prime}x_{m-1}^{\prime}\cdots x_2^{\prime} \in \tilde{X^{*}},且 xx.x1x2xmX~,xmxm1x2X~,
( x 1 x 2 ⋯ x m ) ( x m ′ x m − 1 ′ ⋯ x 1 ′ ) = x 1 x 2 ⋯ x m x m ′ ⋯ x 1 ′ ∼ ∧ . (x_1x_2\cdots x_m)(x_m^{\prime}x_{m-1}^{\prime}\cdots x_1^{\prime})=x_1x_2\cdots x_mx_m^{\prime}\cdots x_1^{\prime} \sim \land. x1x2xm)(xmxm1x1)=x1x2xmxmx1.
这 就 证 明 了 F ( X ) 中 元 素 均 可 逆 , 故 为 群 . 这就证明了F(X)中元素均可逆,故为群. F(X).
例 1 设 X = { a } , 则 F ( X ) 为 无 限 循 环 群 . {\color{blue}例1}设X=\lbrace a \rbrace,则F(X)为无限循环群. 1X={a},F(X).
定 理 4.8.3. 设 X 为 一 非 空 集 合 , G 是 群 , 又 f 是 X 到 G 的 映 射 , 则 存 在 唯 一 的 F ( X ) 到 {\color{blue}定理4.8.3.}设X为一非空集合,G是群,又f是X到G的映射,则存在唯一的F(X)到 4.8.3.X,G,fXG,F(X)
G 的 同 态 ψ , 使 ψ ( x ˉ ) = f ( x ) , ∀ x ∈ X , 这 里 x ˉ 表 示 x 在 F ( X ) = X ∗ ~ / ∼ 中 的 同 态 像 . G的同态\psi,使\psi(\bar{x})=f(x),\forall x \in X,这里\bar x 表示x在F(X)=\tilde{X^{*}}/\sim中的同态像. Gψ,使ψ(xˉ)=f(x),xX,xˉxF(X)=X~/.
证 X ′ , X ∗ 及 X ∗ ~ 如 前 所 述 . 首 先 将 f 扩 充 为 X ∗ 到 G 的 映 射 , 仍 以 f 表 示 , 满 足 f ( x ′ ) = f ( x ) − 1 , ∀ x ′ ∈ X ′ . {\color{blue}证}X^{\prime},X^{*}及\tilde{X^{*}}如前所述.首先将f扩充为X^{*}到G的映射,仍以f表示,满足f(x^{\prime})=f(x)^{-1},\forall x^{\prime} \in X^{\prime}. X,XX~.fXG,f,f(x)=f(x)1,xX.
由 定 理 4.8.1 知 存 在 唯 一 的 幺 半 群 X ∗ ~ 到 G 的 同 态 ϕ , 使 ϕ ( x ) = f ( x ) , ∀ x ∈ X ∗ . 由定理4.8.1知存在唯一的幺半群\tilde{X^{*}}到G的同态\phi,使\phi(x)=f(x),\forall x \in X^{*}. 4.8.1X~Gϕ,使ϕ(x)=f(x),xX.
若 X ∗ ~ 中 元 素 w 1 与 w 2 相 邻 , 不 妨 设 w 1 = g h , w 2 = g x x ′ h , g , h ∈ X ∗ ~ , x , x ′ ∈ X ∗ . x ′ 如 式 ( 1 ) , 则 有 若\tilde{X^{*}}中元素w_1与w_2相邻,不妨设w_1=gh,w_2=gxx^{\prime}h,g,h \in \tilde{X^{*}},x,x^{\prime} \in X^{*}.x^{\prime}如式(1),则有 X~w1w2,w1=gh,w2=gxxh,g,hX~,x,xX.x(1),
ϕ ( w 2 ) = ϕ ( g ) ψ ( x ) ϕ ( x ′ ) ϕ ( h ) = ϕ ( g ) ϕ ( h ) = ϕ ( w 1 ) . \phi(w_2)=\phi(g)\psi(x)\phi(x^{\prime})\phi(h)=\phi(g)\phi(h)=\phi(w_1). ϕ(w2)=ϕ(g)ψ(x)ϕ(x)ϕ(h)=ϕ(g)ϕ(h)=ϕ(w1).
即 得 w 1 ∼ w 2 ⇒ ϕ ( w 1 ) = ϕ ( w 2 ) . 即得w_1 \sim w_2 \Rightarrow \phi(w_1)=\phi(w_2). w1w2ϕ(w1)=ϕ(w2).
对 于 F ( X ) = X ∗ ~ / ∼ 中 的 元 素 w ˉ ( 即 w 所 在 的 同 余 类 ) , 定 义 ϕ ( w ˉ ) = ψ ( w ) , 于 是 有 ϕ 为 同 态 , 且 ψ ( x ˉ ) = f ( x ) , ∀ x ∈ X . 显 然 ψ 唯 一 。 对于F(X)=\tilde{X^{*}}/\sim中的元素\bar w (即w所在的同余类),定义\phi(\bar w)=\psi(w),于是有\phi为同态,且\psi(\bar x) = f(x),\forall x \in X.显然\psi唯一。 F(X)=X~/wˉ(w),ϕ(wˉ)=ψ(w),ϕ,ψ(xˉ)=f(x),xX.ψ
推 论 1 设 X = { a 1 , a 2 , ⋯   , a n } , 则 α : x → x ˉ 是 X 到 F ( X ) 中 的 一 一 映 射 . {\color{blue}推论1}设X=\lbrace a_1,a_2,\cdots,a_n \rbrace,则\alpha:x \to \bar x 是X到F(X)中的一一映射. 1X={a1,a2,,an},α:xxˉXF(X).
证 在 Z n = { ( m 1 , m 2 , ⋯   , m n ) ∣ m i ∈ Z , 1 ≤ i ≤ n } 中 定 义 加 法 运 算 为 {\color{blue}证}在\mathcal{Z}^n=\lbrace (m_1,m_2,\cdots,m_n) | m_i \in \mathcal{Z}, 1\leq i \leq n \rbrace中定义加法运算为 Zn={(m1,m2,,mn)miZ,1in}
( m 1 , m 2 , ⋯   , m n ) + ( l 1 , l 2 , ⋯   , l n ) = ( m 1 + l 1 , m 2 + l 2 , ⋯   , m n + l n ) . (m_1,m_2,\cdots,m_n) + (l_1,l_2,\cdots,l_n)=(m_1+l_1,m_2+l_2,\cdots,m_n+l_n). (m1,m2,,mn)+(l1,l2,,ln)=(m1+l1,m2+l2,,mn+ln).
则 Z n 是 交 换 群 , 而 X 到 Z n 中 映 射 则\mathcal{Z}^n是交换群,而X到\mathcal{Z}^n中映射 Zn,XZn
f : a i → ( m 1 , m 2 , ⋯   , m n ) , m j = δ i j , 1 ≤ i , j ≤ n f:a_i\to (m_1,m_2,\cdots,m_n),m_j=\delta_{ij},1\leq i,j \leq n f:ai(m1,m2,,mn),mj=δij,1i,jn
是 一 一 映 射 . 是一一映射. .
由 定 理 4.8.3 知 有 F ( X ) 到 Z n 的 同 态 ψ , 使 得 由定理4.8.3知有F(X)到\mathcal{Z}^n的同态\psi,使得 4.8.3F(X)Znψ,使
ψ ( x ˉ ) = f ( x ) , ∀ x ∈ X , \psi(\bar x) = f(x), \forall x \in X, ψ(xˉ)=f(x),xX,
即 有 ψ α = f . 因 f 是 一 一 的 , 故 α 也 是 一 一 的 . 即有\psi \alpha = f.因f是一一的,故\alpha也是一一的. ψα=f.f,α.
由 推 论 1 , X 可 视 为 F ( X ) 的 子 集 , 此 时 , 定 理 4.8.3 中 ψ 的 条 件 可 改 为 由推论1,X可视为F(X)的子集,此时,定理4.8.3中\psi的条件可改为 1XF(X),,4.8.3ψ
ψ ( x ) = f ( x ) , ∀ x ∈ X . \qquad \psi(x) = f(x), \forall x \in X. ψ(x)=f(x),xX.
推 论 2 设 G 是 有 限 生 成 群 , 则 G 同 构 于 一 个 自 由 群 的 商 群 . {\color{blue}推论2}设G是有限生成群,则G同构于一个自由群的商群. 2G,G.
证 设 G = ⟨ g 1 , g 2 , ⋯   , g n ⟩ , X = { a 1 , a 2 , ⋯   , a n } , 定 义 X 到 G 的 映 射 {\color{blue}证}设G=\lang g_1,g_2,\cdots,g_n \rang,X=\lbrace a_1,a_2,\cdots,a_n \rbrace,定义X到G的映射 G=g1,g2,,gn,X={a1,a2,,an},XG
f : f ( a i ) = g i ; \qquad f: f(a_i) = g_i; f:f(ai)=gi;
于 是 由 定 理 ? ? 有 F ( X ) 到 G 的 同 态 ψ , 满 足 于是由定理??有F(X)到G的同态\psi,满足 ??F(X)Gψ,
ψ ( a i ) = f ( a i ) = g i . \qquad \psi(a_i) = f(a_i) = g_i. ψ(ai)=f(ai)=gi.
因 而 ψ ( F ( X ) ) = G , 故 G ≃ F ( X ) / k e r ψ . 因而\psi(F(X)) = G,故G \simeq F(X)/\mathrm{ker}\psi. ψ(F(X))=G,GF(X)/kerψ.
我 们 称 k e r ψ 为 G 的 生 成 元 g 1 , g 2 , ⋯   , g n 间 的 关 系 集 . 如 k e r ψ 也 是 由 有 限 个 元 素 我们称\mathrm{ker}\psi为G的生成元g_1,g_2,\cdots,g_n间的{\color{blue}关系集}.如\mathrm{ker}\psi也是由有限个元素 kerψGg1,g2,,gn.kerψ
w 1 , w 2 , ⋯   , w r 生 成 , 则 称 G 是 有 限 生 成 的 . 而 w_1,w_2,\cdots,w_r生成,则称G是{\color{blue}有限生成}的.而 w1,w2,,wr,G.
ψ ( w i ) = e , 1 ≤ i ≤ r \qquad \psi(w_i) = e, 1 \leq i \leq r ψ(wi)=e,1ir
称 为 G 的 生 成 元 g 1 , g 2 , ⋯   , g n 的 一 组 生 成 关 系 . 称为G的生成元g_1,g_2,\cdots,g_n的一组{\color{blue}生成关系}. Gg1,g2,,gn.
例 2 设 D n 是 保 证 正 n 边 形 不 动 的 转 动 与 反 射 生 成 的 群 , 通 常 称 为 二 面 体 群 , {\color{blue}例2}设D_n是保证正n边形不动的转动与反射生成的群,通常称为二面体群, 2Dnn,,
设 a 是 转 动 2 π / n , 而 b 是 对 x 轴 的 反 射 ( 假 定 正 n 边 形 有 一 个 顶 点 在 x 轴 的 正 方 向 ) . 设a是转动2\pi/n,而b是对x轴的反射(假定正n边形有一个顶点在x轴的正方向). a2π/n,bx(nx).
容 易 看 出 , D n 由 a 与 b 生 成 , 即 D n = ⟨ a , b ⟩ , 且 有 容易看出,D_n由a与b生成,即D_n=\lang a, b \rang,且有 ,Dnab,Dn=a,b,
a n = b 2 = i d , b a b = a − 1 . \qquad a^n = b^2 = \mathrm{id}, bab = a^{-1}. an=b2=id,bab=a1.
我 们 来 证 明 这 些 就 是 D n 的 生 成 关 系 . 我们来证明这些就是D_n的生成关系. Dn.
令 X = { x 1 , x 2 } , 于 是 有 F ( X ) 到 D n 的 同 态 ψ , 使 ψ ( x 1 ) = a , ψ ( x 2 ) = b . 令X=\lbrace x_1, x_2 \rbrace,于是有F(X)到D_n的同态\psi,使\psi(x_1)=a,\psi(x_2)=b. X={x1,x2},F(X)Dnψ,使ψ(x1)=a,ψ(x2)=b.
由 上 面 关 系 知 x 1 n , x 2 2 , x 1 x 2 x 1 x 2 ∈ k e r ψ . 由上面关系知x_1^n,x_2^2,x_1x_2x_1x_2 \in \mathrm{ker}\psi. x1n,x22,x1x2x1x2kerψ.
于 是 由 x 1 n , x 2 2 , x 1 x 2 x 1 x 2 生 成 的 F ( X ) 的 正 规 子 群 K ( 即 包 含 x 1 n , x 2 2 , x 1 x 2 x 1 x 2 的 于是由x_1^n,x_2^2,x_1x_2x_1x_2生成的F(X)的正规子群K(即包含x_1^n,x_2^2,x_1x_2x_1x_2的 x1n,x22,x1x2x1x2F(X)K(x1n,x22,x1x2x1x2
最 小 正 规 子 群 ) 在 k e r ψ 中 . 最小正规子群)在\mathrm{ker}\psi中. )kerψ.
又 F ( X ) / k e r ψ 与 D n 同 构 , 因 此 只 需 证 明 [ F ( X ) : K ] ≤ ∣ D n ∣ = 2 n , 又F(X)/\mathrm{ker}\psi与D_n同构,因此只需证明[F(X):K] \leq |D_n| = 2n, F(X)/kerψDn,[F(X):K]Dn=2n,
则 有 k e r ψ = K , 即 上 述 关 系 为 D n 的 生 成 关 系 . 则有\mathrm{ker}\psi=K,即上述关系为D_n的生成关系. kerψ=K,Dn.
显 然 x ˉ 1 = x 1 K , x ˉ 2 = x 2 K 为 F ( x ) / K 的 生 成 元 , 显然\bar x_1 = x_1K,\bar x_2 = x_2K为F(x)/K的生成元, xˉ1=x1K,xˉ2=x2KF(x)/K
由 x 1 n , x 2 2 , x 1 x 2 x 1 x 2 ∈ K , 由x_1^n,x_2^2,x_1x_2x_1x_2 \in K, x1n,x22,x1x2x1x2K,
有 X 1 n ‾ = x 2 2 ‾ = x ˉ 1 x ˉ 2 x ˉ 1 x ˉ 2 = e ˉ , 有\overline{X_1^n} = \overline{x_2^2}=\bar x_1 \bar x_2 \bar x_1 \bar x_2 = \bar e, X1n=x22=xˉ1xˉ2xˉ1xˉ2=eˉ,
故 x ˉ 2 x ˉ 1 = x − 1 ‾ x ˉ 2 , x ˉ 2 x 1 k ‾ = x 1 − k ‾ x ˉ 2 , 故\bar x_2 \bar x_1 = \overline{x^{-1}} \bar x_2, \bar x_2 \overline{x_1^k}=\overline{x_1^{-k}}\bar x_2, xˉ2xˉ1=x1xˉ2,xˉ2x1k=x1kxˉ2,
因 而 F ( X ) / K 中 子 集 G 1 = { x 1 k ‾ , x 1 k ‾ x ˉ 2 ∣ 1 ≤ k ≤ n } 为 子 群 , 因而F(X)/K中子集G_1=\lbrace \overline{x_1^{k}}, \overline{x_1^{k}}\bar x_2 | 1 \leq k \leq n \rbrace为子群, F(X)/KG1={x1k,x1kxˉ21kn},
但 由 x ˉ 1 , x ˉ 2 ∈ G 1 , 知 G 1 = F ( X ) / K , 而 ∣ G 1 ∣ ≤ 2 n , 因 而 [ F ( X ) : K ] ≤ 2 n . 但由\bar x_1, \bar x_2 \in G_1,知G_1=F(X)/K,而|G_1| \leq 2n, 因而[F(X):K] \leq 2n. xˉ1,xˉ2G1,G1=F(X)/K,G12n,[F(X):K]2n.

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值