Coding the Matrix: Week 5 The Dimension 学习笔记

本周课程主要内容有:

  1. 空间维度和向量集的秩;
  2. 直和与互补子空间;
  3. 矩阵可逆判据;
  4. 对偶空间。

变形引理(Morphing Lemma):

V 为向量空间,A 为 V 的一组生成集,B 为 V 的一组基底(Basis),则有 | B | < | A |。

可以得到两个重要的定理

  1. 向量空间 V 的所有基底都是它的最小生成集。
  2. 向量空间 V 的所有基底具有同样的大小(Size)。

基于这样的事实,可以得到线性代数中另外两个重要的概念

  • 维度(Dimension):向量空间 V 的基底的大小称为该向量空间的维度,表示为 dim V 。
  • (Rank):Span S 的维度称为向量集合 S 的秩,表示为 rank S。

进一步,对于矩阵 M ,M 的行秩为它各行组成向量集的秩,列秩为它各列组成向量集的秩。

接下来介绍两条关于向量集合的引理:

  • 子集基底引理Subset-Basis Lemma):每个有限的向量集合 S 必包含一个子集,且这个子集是 Span S 的基底。
  • 超集基底引理Superset-Basis Lemma):对向量空间 V ,令 C 是属于 V 的一组线性独立的向量集合,那么 V 必有一个基底包含了 C 中的所有向量。

由这两个引理出发,可以得到一个定理对向量集合 T,有 rank T <= | T |

对维度,有

维度引理(Dimension Lemma):

设 U 是 W 的子空间,则有:

  • D1 :dim U <= dim W;
  • D2 :如果 dim U = dim W,则 U = W。

由此引理可以得到维度定理Dimension Theorem):

对于有限的 D ,每个子空间 F^D 包含一个基底。

对秩,有

秩引理(Rank Lemma):

对任何矩阵 A ,都有 A 的行秩 <= A 的列秩。

由此引理可以得到秩定理(Rank Theorem):

对任何矩阵 M ,均有 M 的行秩 = M 的列秩。

再补充一些有关直和(Direct Sum)的相关内容。

直和的定义为:如果 U 和 V 只共同包含零向量,那么 U 和 V 的直和为集合{ u + v :u 属于 U ,v 属于 V },表示为 U(+)V 。

根据定义,可以得到几个引理:

  • 引理一U(+)V 是一个向量空间。
  • 引理二由 U 的一个生成集和 V 的一个生成集联合组成的集合构成 U(+)V 的一个生成集。

由上述引理二可以进一步得到直和基底引理(Direct Sum Basis Lemma):U 的一个基底和 V 的一个基底的联合是 U(+)V 的一个基底。

由这一引理有可以得到一个结论:dim U + dim V = dim U(+)U

对直和的这些性质进行拓展,可以得到互补子空间(Complementary subspace)的定义:如果 U(+)V = W ,那么称 U 和 V 为 W 的互补子空间。

根据这一定义,不难得到定理对于任何具有有限维度的向量空间 W 和它的任何子空间 U ,必存在一个子空间 V 使得 U 和 V 是 W 的互补子空间。

回顾一下前面的知识,如果要知道一个矩阵是否可逆,那么可以通过证明函数 f (x) = M * x 是否可逆得到,而要证明一个线性函数 f :V -> W 是否可逆,只需要知道两个问题:

  • 是否一对一:函数 f 是一对一意味着它的核(Kernel)是平凡的(Trivial),等价于它的核的维度是否为0;
  • 是否映射的:函数 f 是映射的(Onto)意味着它的映射(Image)等于值域。

第一个问题已经解决,下面解决第二个问题。

首先根据映射定义,不难得到引理函数 f 的映射是 W 的一个子空间。

在此基础上,根据维度引理,可以得到如果 dim Im f = dim W ,则有 Im f = W ,即函数 f 是映射的。

由此得出一个结论当且仅当 dim ker f = 0 且 dim Im f = dim W 时,函数 f 是可逆的

将这个结论与定义域的维度联系起来,可以得到定理:要使 f 是可逆的,需要满足 dim V = dim W。

根据上述知识,可以进一步得到核-映射定理(Kernel-Image Theorem):

对任意的线性函数 f :V -> W ,有

dim ker f + dim im f = dim V

由此推导得到线性函数可逆定理

令 f :V -> W 是一个线性函数,当且仅当 dim ker f = 0 和 dim V = dim W 时,f 是可逆函数。

将核-映射定理应用于线性函数 f(x) = Ax ,有:

  • ker f = Null A
  • dim Im f = dim Col A = rank A

定义矩阵A的零度(nullity)为 dim Null A ,有核-映射定理,可以得到秩-零度定理(Rank-Nullity Theorem):

对于任意的 n 列矩阵 A ,有

nullity A + rank A = n

由这个定理,可以得到判定矩阵是否可逆的一个判据

令 A 是一个 R * C 矩阵,当且仅当 | R | = | C | 和 A 的各列线性独立时,矩阵 A 是可逆的。

根据零度的定义,及前面章节相关知识,不难看到:

nullity A = 0

等价于

dim Null A = 0

等价于

Null A = {0}

等价于

满足 Ax = 0 的唯一向量为x =0

等价于

A 各列是线性独立的。

由上面的判据,可以得到几个关于可逆性的定理:

  • 定理一可逆矩阵的转置仍然是可逆矩阵。
  • 定理二假设 A 和 B 都是方阵(Square Matrix),且有 BA 等于单位矩阵I,则 A、B 互为逆矩阵。

在前面的文章中曾经提到过,向量空间有两种表示方式:齐次线性方程组的解集以及生成向量集。对于同一个向量空间,应该如何在这两种表示方式之间进行转化呢?

对这一问题的求解过程中,可以得到另外一个重要的概念——对偶空间(Dual Space),定义为:对 F^n 上的一个子空间 V ,它的对偶空间表示为 V* , 且有 V* = {u 属于 F^n :u .* v = 0 对于所有 v 属于 V }

与前面的关系比较可以得到对偶维度定理dim V + dim V* = n。

以及定理( V* )* = V。

至此,我们介绍完了本周课程所有的理论基础知识。

下面是算法描述:

本周最重要的算法是判断一个矩阵是否可逆。

def is_invertible(M): 
    '''
    input: A matrix, M
    outpit: A boolean indicating if M is invertible.
    '''
    # if column list of M is linear independent
        # if the number of columns is equal to number of rows
            # return True
    # return False





  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值