程序员的线性代数读书笔记——第二章

目录

 

问题设定:逆问题

良性问题(可逆矩阵)

初等变换

恶性问题

对矩阵的恶劣程度进行描述有两个量:核与像

可逆<->良性 可逆性的总结

针对恶性问题的对策


 

问题设定:逆问题

现实中的很多问题可以表示为,由一个原因x,经过某个特定的系统A,最后得到预测结果y。由结果y去推测原因x的问题称为逆问题。在实际问题中,往往需要考虑噪声,y=Ax+(噪声)。

良性问题(可逆矩阵)

设x和y是具有想同维度的向量,A是方阵(非方阵没有逆矩阵的定义),如果A存在逆矩阵,则称其是可逆矩阵(也有称为正则矩阵,非奇异矩阵),否则称为奇异矩阵

初等变换

求解线性方程组或者矩阵求逆的时候我们经常是通过消元法或者gauss-jordan的方法,这些笔算的步骤都可以归结为一下三个操作

  • 将某行乘以c(c!=0)
  • 将某行的c倍加到另一行上
  • 交换两行

这三种操作都可以用“乘上一个矩阵”的形式表示出来,比如需要将3*4的矩阵A的第三行乘以5,就相当于矩阵A左乘”将I的(3,3)元素替换成5得到的矩阵Q3(5)“

Q3(5)=\left ( \begin{matrix} 1 &0 &0 \\ 0& 1 &0 \\ 0& 0 &5 \end{matrix} \right )

比如要将第1行*10加到第2行那么就将I的(2,1)替换成10得到矩阵R2,1(10)

或者需要替换1/3行,那么就替换I的第1行和第3行得到矩阵,S1,3

这样的操作叫做初等变换,只要方阵A可逆,我们就可以通过初等变换得到A的逆

恶性问题

我们说过矩阵就是映射,y=Ax就是把x通过A映射到目标空间,得到y。

当矩阵的行数m小于列数n的时候,代表未知量有n个,但是线索只有m条,这种情况我们称之矮矩阵或者核,其往往无法求解。

假如说一个矩阵Am*n,m=2,n=3,矩阵A就代表将x所在的三维空间的向量x映射到二位空间的向量y,这样高维到低维的映射一定对应着压缩扁平化,也就是所原来三维空间的许多向量x会被映射到二维空间的同一点上,以至于无法通过y判断是属于原来哪一个x

当矩阵的行数m大于列数n的时候,代表未知量有n个,但是线索有超多的m条,但是这个时候也不可以掉以轻心,如果这些线索是线性相关的(也就是说其中的一个线索可以通过其他的线索推断出来),那么这条线索就是没有意义的,当然假设线索都有意义,我们这时候的矩阵就相当于从一个低维空间(n维度)到高维度空间的映射了,这时候你会发现高维空间中的很多点其实映射后张成的空间是无法触及的。

当线索数刚刚好为未知量个数的时候,也不一定就是良性问题,当这个矩阵中的线索线性相关,有用的线索数小于未知量个数,同时,发生了压缩扁平化,这个A是没有逆矩阵的。

所以究竟怎么样才是良性什么样才是恶性呢?

当给定的问题y=Ax中,A不是方阵的时候,要么解的存在性被破坏了(m>n),要么解的唯一性被破坏了(m<n)

对矩阵的恶劣程度进行描述有两个量:核与像

一个矩阵A的核Kernel(A)的定义是在映射的作用下,满足Ax=o的x的集合,称作A的核,记作Ker A

比如图2.4的核就是标记着Ker A的平面,这时候A的核的维数是2,如果像图2.6,由于没有发生压缩映射,这时候映射到原点的还是原来空间中的原点,是一个点,所以Ker A=0

像就是映射之后张成的空间,图2.6张成的空间是一个三维空间,而图2.4张成的是二维空间(面)

我们称没有发生压缩映射的映射为单射,映射后张成的空间填满了目标空间全体值域的映射称为满射

dimX代表X的维度,则有dim Ker A+dim Im A=n意思就是映射的核的维度核映射之后张成空间的维度应该等于原来空间的维度大小,这个叫做  维数定理

dimKerA就是压缩掉的维数,ImA就是映射之后的空间的维数,这也是一个映射A的秩 rankA(线索的实际个数)

现在总而言之,遇到y=Ax的问题,我们最主要关心的问题就是

  1. 是否单射<->rankA=n
  2. 是否满射<->rankA=m

如果都满足,那么就是双射,这个问题就是良性问题。

可逆<->良性 可逆性的总结

为了防止看论文的时候有些人装逼不说可逆,下面写出可逆的所有等价条件

  • A表示的映射不是压缩扁平化的
  • A表示的映射是单射
  • KerA只包含原点o一点
  • dimKerA=0

当A=(a1,a2...an)

  • a1,a2,....,an线性无关
  • 使得Ax=o成立的只有x=o一个解
  • detA!=0
  • A不含有0特征值
  • A^{T}可逆
  • 对于任何n维向量y,使得y=Ax的x都只有一个

如果A是方阵

  • A是满射
  • A的映射可以覆盖到全体目标空间
  • ImA是n维空间全体
  • rankA=dimImA=n

针对恶性问题的对策

我们知道就算问题的解有很多个,那么我们也要给出到底怎么样的向量才满足y=Ax,这样才算解决问题。

下面给出一个定理,给定的矩阵A,和向量y,方程y=Ax存在解x的充分必要条件是,y属于ImA。这是显而易见的。

找出所有解只需要找到一个解,然后加上KerA就可以了。

证明:

我们已知x1满足 y=Ax1 我们假设其他的解x0也满足,所以y=Ax0

所以A(x1-x0)=o 按照KerA的定义 所有满足 Ax=o的x的集合是KerA,所以令z=x1-x0

也就是说y=Ax的解可以表示称x1=x0+z或者x0=x1-z,那么只要知道一个特解x1,就可以通过KerA知道其他所有解了

 

 

 

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值