概率学派和贝叶斯学派的区别

前言

对于一个数学模型来说,最主要的莫过于根据观察到的数据进行模型的参数估计了,而概率学派和贝叶斯学派对于这个参数估计有着不同的做法,接下来我们讨论下。如有谬误,请联系指正。转载请注明出处。

∇ \nabla 联系方式:

e-mail: FesianXu@gmail.com

QQ: 973926198

github: https://github.com/FesianXu

知乎专栏: 计算机视觉/计算机图形理论与应用

微信公众号
qrcode


概率派和贝叶斯派的区别

对于一个问题,从概率派和贝叶斯派看起来是完全不一样的,其最主要的区别就是对于一个问题中模型参数的“信仰”:

  • 对于频率派学者来说,一个模型中的参数是“固定”的,而数据是在分布中随机采样的。我们要重点理解这个固定,这里指的固定意思是

对于一个模型或者也可说一个分布中的参数,我们相信它是固定不变的,而我们观察(采样)到的数据是这个分布中的一个独立同分布样本。也就是说,我们相信这个分布的参数不管你怎么采样,根据参数对其的估计都应该是不会变的,They remain constant!如果根据数据估计出来的参数和真实模型不符合,只可能是引入了噪声而已。在这个观点中,模型参数才是上帝,数据为之服务。

  • 对于贝叶斯派学者来说,我们观察到的数据才是“固定”的,而我们的模型的参数才是在一直变化的。我们不停地观察数据,估计出来的模型参数就可能一直的变化。不仅如此,我们对于这个模型的参数可能会有一个最初始的信仰,称之为先验假设,一旦设置后了之后,我们就可以听由观察到的数据指导模型参数更新了。在这种观点中,我们的模型参数不再是一个参数,而是一个分布了。一般来说,对于贝叶斯派,有公式:
    P { θ ∣ D } = P { D ∣ θ } P { θ } P { D } (1.0) P\{\theta|D\} = \dfrac{P\{D|\theta\}P\{\theta\}}{P\{D\}} \tag{1.0} P{θD}=P{D}P{Dθ}P{θ}(1.0)
    其中 P { θ ∣ D } P\{\theta|D\} P{θD}称为后验概率,指的是由观察数据和先验假设推测出来的参数分布,而 P { θ } P\{\theta\} P{θ}称之为先验分布,指的是对于参数的专家知识或者假设而引入的知识,可以指导参数 θ \theta θ的学习,而 P { D ∣ θ } P\{D|\theta\} P{Dθ}称之为似然函数,指的就是由于观察数据导致的参数更新。

我们举个投硬币的例子也说明下这两者区别:

Question:现在我们有一个硬币,假设朝向正面的几率为 p p p,朝向反面的几率为 1 − p 1-p 1p,这个 p p p是未知的,现在为了估计 p p p,投掷了14次,其中有10次朝向正面,问再投掷两次,都朝向正向的概率为多少。

在传统的概率派解答中,因为相信这个模型的参数是固定的,所以很容易知道 p = 10 14 = 0.714 p=\dfrac{10}{14}=0.714 p=1410=0.714,因此在后面投掷两次的过程中,假设都是独立过程,那么
P { H H ∣ d a t a } = p 2 = 0.51 (1.1) P\{HH|data\}=p^2=0.51 \tag{1.1} P{HHdata}=p2=0.51(1.1)


而在贝叶斯派眼中,问题就没有那么简单了,我们相信参数 p p p不是简单的一个参数,而应该是一个随机变量,服从一个分布,那么我们就需要用观察到了的数据 d a t a data data去估计这个参数 p p p的分布,利用贝叶斯公式有:
P { p ∣ d a t a } = P { d a t a ∣ p } P { p } P { d a t a } (1.2) P\{p|data\} = \dfrac{P\{data|p\}P\{p\}}{P\{data\}} \tag{1.2} P{pdata}=P{data}P{datap}P{p}(1.2)
因为在已知观察中, d a t a data data是固定的,所以 P { d a t a } = c o n s t a n t P\{data\}=constant P{data}=constant是一个常数,不妨忽略它,有:
P { p ∣ d a t a } ∝ P { d a t a ∣ p } P { p } (1.3) P\{p|data\} \propto P\{data|p\}P\{p\} \tag{1.3} P{pdata}P{datap}P{p}(1.3)

有:
P { d a t a ∣ p } = C 14 10 p 10 ( 1 − p ) 4 (1.4) P\{data|p\} = C_{14}^{10} p^{10}(1-p)^{4} \tag{1.4} P{datap}=C1410p10(1p)4(1.4)
参数 C 14 10 C_{14}^{10} C1410可以忽略,现在对于先验假设 P { p } P\{p\} P{p}进行假设,一般来说,我们希望这个假设是一个共轭先验(conjugate prior)1
这里用Beta分布作为硬币参数的先验假设,

B e t a ( p ; a , b ) = Γ ( a + b ) Γ ( a ) ⋅ Γ ( b ) ⋅ p a − 1 ( 1 − p ) b − 1 (1.5) Beta(p;a,b)=\dfrac{\Gamma(a+b)}{\Gamma(a) \cdot \Gamma(b)} \cdot p^{a-1}(1-p)^{b-1} \tag{1.5} Beta(p;a,b)=Γ(a)Γ(b)Γ(a+b)pa1(1p)b1(1.5)
其中伽马函数 Γ ( ⋅ ) \Gamma(\cdot) Γ()定义为:
Γ ( x ) = ∫ 0 + ∞ t x − 1 e − t d t (1.6) \Gamma(x) = \int_{0}^{+\infty} t^{x-1}e^{-t} \rm dt \tag{1.6} Γ(x)=0+tx1etdt(1.6)

Beta分布有两个控制参数a和b,不同的a和b其CDF的形状差别很大:
![gamma][gamma]


在这个先验假设下,我们有:
P { p } = B e t a ( p ; a , b ) (1.7) P\{p\} = Beta(p;a,b) \tag{1.7} P{p}=Beta(p;a,b)(1.7)
同样的,因为 Γ ( a + b ) Γ ( a ) \dfrac{\Gamma(a+b)}{\Gamma(a)} Γ(a)Γ(a+b)是常数项,忽略所以有:
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ P\{p|data\} &\…

为了让
∫ 0 + ∞ p { p ∣ d a t a } d p = 1 (1.9) \int_{0}^{+\infty} p\{p|data\} \rm dp = 1 \tag{1.9} 0+p{pdata}dp=1(1.9)
需要拼凑系数,可知道系数为(这里不是特别懂
Γ ( ( 10 + a ) + ( 4 + b ) ) Γ ( 10 + a ) ⋅ Γ ( 4 + b ) = 1 B ( 10 + a , 4 + b ) (1.10) \dfrac{\Gamma((10+a)+(4+b))}{\Gamma(10+a) \cdot \Gamma(4+b)} = \dfrac{1}{B(10+a,4+b)} \tag{1.10} Γ(10+a)Γ(4+b)Γ((10+a)+(4+b))=B(10+a,4+b)1(1.10)
其中 B ( x , y ) B(x,y) B(x,y)为Beta函数, B ( x , y ) = Γ ( x ) Γ ( y ) Γ ( x + y ) B(x,y) = \dfrac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)} B(x,y)=Γ(x+y)Γ(x)Γ(y)

于是最终有参数 p p p的概率分布为:
P { p ∣ d a t a } = B e t a ( p ; a + 10 , b + 4 ) (1.11) P\{p|data\} = Beta(p;a+10, b+4) \tag{1.11} P{pdata}=Beta(p;a+10,b+4)(1.11)
如果我们对 p p p毫无先验可言,那么可以令 a = b = 0 a=b=0 a=b=0,这个时候的计算结果就和频率学派的一模一样,但是如果我们自认为对这个硬币的参数 p p p有所了解,但是又不是完全了解,比如说我们知道这个先验应该是一个均匀分布的(也就是正面和反面都应该是0.5的,这个应该是最朴素和直观的假设了。),而均匀分布是Beta分布的一个特例,我们可以令 a = b = 1 a=b=1 a=b=1,这个时候有:
P { p ∣ d a t a } = B e t a ( p ; 11 , 5 ) (1.12) P\{p|data\} = Beta(p;11,5) \tag{1.12} P{pdata}=Beta(p;11,5)(1.12)
图像如:

![gamma_2][gamma_2]

可以看到因为引入了这个朴素的假设,使得 p p p变成了一个中心在 p = 0.7 p=0.7 p=0.7附近的钟形分布,这个时候就发现了和频率派的区别:我们的参数p是一个分布,而不只是一个数值而已。


有了 P { p ∣ d a t a } P\{p|data\} P{pdata},我们回归原问题,求:
P { H H ∣ d a t a } = ∫ 0 1 P { H H ∣ p } P { p ∣ d a t a } d p (1.13) P\{HH|data\} = \int_{0}^{1} P\{HH|p\} P\{p|data\} \rm dp \tag{1.13} P{HHdata}=01P{HHp}P{pdata}dp(1.13)
这里用积分的原因很简单,就是因为我们的p是一个分布,其值从0到1,因此需要用积分。
这里进行两个假设:

  1. 投掷硬币每一次都是独立无关的。
  2. 在这接下来的两个投掷过程中我们不更新 P { p ∣ d a t a } P\{p|data\} P{pdata}

所以有:
P { H H ∣ p } = [ P { H ∣ p } ] 2 = p 2 (1.14) P\{HH|p\} = [P\{H|p\}]^2 = p^2 \tag{1.14} P{HHp}=[P{Hp}]2=p2(1.14)
所以有:
P { H H ∣ d a t a } = ∫ 0 1 p 2 ⋅ P { p ∣ d a t a } d p (1.15) P\{HH|data\} = \int_{0}^{1} p^2 \cdot P\{p|data\} \rm dp \tag{1.15} P{HHdata}=01p2P{pdata}dp(1.15)
所以有:
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ P\{HH|data\} &…

同样假设 a = b = 1 a=b=1 a=b=1则有 B ( 13 , 5 ) B ( 11 , 5 ) = 0.485 \dfrac{B(13,5)}{B(11, 5)}=0.485 B(11,5)B(13,5)=0.485,从这里就看出了频率学派和贝叶斯学派的区别。

总结

频率学派和贝叶斯学派的方法优缺点概况:

  • 频率学派是目前深度学习中最常使用的指导思想,但是要想其效果好,必须基于数据量巨大的情况下,否则很难估计出一个好的参数。(因为其不引入任何先验假设,只能从大数据中学习得到。)
  • 贝叶斯学派的方法可以应用在数据量小的情况下,而且方便引入各种专家知识和先验知识,有些场景中表现更为优越。

实际上,频率学派和贝叶斯学派有着千丝万缕的关系,不可割裂看待,也没有孰优孰劣。

Reference

  1. Bishop 《Pattern Recognize and Machine Learning, PRML》
  2. 《Are you a Bayesian or a Frequentist? (Or Bayesian Statistics 101)》
  3. 《Bayesian and frequentist reasoning in plain English》
  4. 《先验概率、后验概率以及共轭先验》

  1. 后验概率分布(正⽐于先验和似然函数的乘积)拥有与先验分布相同的函数形式。这个性质被叫做共轭性(Conjugacy)。共轭先验(conjugate prior)有着很重要的作⽤。它使得后验概率分布的函数形式与先验概率相同,因此使得贝叶斯分析得到了极⼤的简化 ↩︎

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FesianXu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值