获取贵州茅台2010年1月1号至今的股票交易数据,计算该股票历史数据的5日均线和30日均线

获取贵州茅台2000年1月1号至今的股票交易数据,计算该股票历史数据的5日均线和30日均线

1.使用tushare获取2000至今的股票数据

    1)首先, 使用前我们在tushare pro上注册一下,获取一个token,用来访问接口。

     2)其次,查询到贵州茅台对应的股票代码为600519

    然后,开始编写代码,代码如下:

import tushare as ts
import pandas as pd

token='c09c*****8c'
pro = ts.pro_api(token)
df = pro.daily(ts_code = '600519.SH',start_date = '20000101', end_date= '20200723')
#df.to_csv('000519.csv')
df.head()

2.查看获取到的数据如下:

    可以看到已经获取了股票数据,但是存在一个问题,结果是按照交易日期降序排列的,这个和我们计算均线的方式是不同的。因此需要将获取到的数据,按照交易日期递增排列

3.按照日期排序  

df = df.sort_values('trade_date')

4.

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练部署深度学习模型的工具库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
首先,你需要安装tushare这个Python库,如果你还没有安装,可以使用pip进行安装: ```bash pip install tushare ``` 然后,你可以按照以下步骤从Tushare获取贵州茅台(A股)的历史股票数据1. **初始化tushare API**: 需要在运行代码前先注册一个Tushare Pro账户,并获得token,然后创建一个Pro接口: ```python import tushare as ts pro = ts.pro_api('your_token_here') ``` 2. **指定股票代码日期范围**: 使用`pro.daily()`函数获取每日行情数据,传入'AIG'(贵州茅台股票代码)以及你想获取的时间范围,如最近一数据: ```python start_date = '20220101' # 开始日期,格式YYYYMMDD end_date = '20230101' # 结束日期,格式同上 df_moutai = pro.daily(ts_code='000858.SZ', start_date=start_date, end_date=end_date) ``` 3. **清洗数据并导出到Excel**: 股票数据通常包含很多列,你可以根据需要选择并处理数据。比如,只保留必要的字段,然后使用pandas库将DataFrame保存为Excel文件: ```python # 选择需要的列 df_moutai = df_moutai[['trade_date', 'open', 'close', 'high', 'low', 'vol']] # 保存到Excel df_moutai.to_excel('贵州茅台历史数据.xlsx', index=False) ``` 4. **注意权限频率限制**: Tushare有访问频率限制,如果频繁请求,可能会遇到错误,记得控制好查询频率。 完成以上步骤后,你应该就能在一个名为“贵州茅台历史数据.xlsx”的Excel文件中找到贵州茅台的历史股票数据了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值