[矩阵论] Unit 6. 矩阵的 Kronecker 积与 Hadamard 积 - 知识点整理

  • 注: 以下内容均由个人整理, 不保证完全准确, 如有纰漏, 欢迎交流讨论
  • 参考: 杨明, 刘先忠. 矩阵论(第二版)[M]. 武汉: 华中科技大学出版社, 2005

6 矩阵的 Kronecker 积与 Hadamard 积

6.1 Kronecker 积与 Hadamard 积的定义

K-积和 H-积定义

K-积:
A m × n ⊗ B s × t = [ a i j B ] m s × n t = [ a 11 B ⋯ a 1 n B a 21 B ⋯ a 2 n B ⋯ ⋯ ⋯ a m 1 B ⋯ a m n B ] A_{m\times n}\otimes B_{s\times t}=[a_{ij}B]_{ms\times nt}=\begin{bmatrix} a_{11}B&\cdots&a_{1n}B\\ a_{21}B&\cdots&a_{2n}B\\ \cdots&\cdots&\cdots\\ a_{m1}B&\cdots&a_{mn}B\\ \end{bmatrix} Am×nBs×t=[aijB]ms×nt=a11Ba21Bam1Ba1nBa2nBamnB
(用 A A A 膨胀 B B B, 以 B B B 作为基础)

H-积:
A m × n ∘ B m × n = [ a i j b i j ] m × n = [ a 11 b 11 ⋯ a 1 n b 1 n a 21 b 21 ⋯ a 2 n b 2 n ⋯ ⋯ ⋯ a m 1 b m 1 ⋯ a m n b m n ] A_{m\times n}\circ B_{m\times n}=[a_{ij}b_{ij}]_{m\times n}=\begin{bmatrix} a_{11}b_{11}&\cdots&a_{1n}b_{1n}\\ a_{21}b_{21}&\cdots&a_{2n}b_{2n}\\ \cdots&\cdots&\cdots\\ a_{m1}b_{m1}&\cdots&a_{mn}b_{mn}\\ \end{bmatrix} Am×nBm×n=[aijbij]m×n=a11b11a21b21am1bm1a1nb1na2nb2namnbmn
(要求 A A A B B B 大小一致)

K-积 H-积的基本结果

  • 分块矩阵 A = ( A s t ) A=(A_{st}) A=(Ast): A ⊗ B = ( A s t ⊗ B ) A\otimes B=(A_{st}\otimes B) AB=(AstB)
  • A A A B B B 有一个零矩阵, 则 A ⊗ B = 0 , A ∘ B = 0 A\otimes B=0,A\circ B=0 AB=0,AB=0
  • I m × n ⊗ I s × t = I m s × n t , I ∘ I = I I_{m\times n}\otimes I_{s\times t}=I_{ms\times nt}, I\circ I=I Im×nIs×t=Ims×nt,II=I
  • A A A 为对角矩阵, 则 A ⊗ B A\otimes B AB 为分块对角矩阵, A ∘ B A\circ B AB 为对角矩阵

K-积 H-积的基本性质

  • ( k A ) ⊗ B = A ⊗ ( k B ) (kA)\otimes B=A\otimes(kB) (kA)B=A(kB)
    ( k A ) ∘ B = A ∘ ( k B ) (kA)\circ B=A\circ (kB) (kA)B=A(kB)
  • A ⊗ ( B + C ) = A ⊗ B + A ⊗ C A\otimes(B+C)=A\otimes B+A\otimes C A(B+C)=AB+AC
    A ∘ ( B + C ) = A ∘ B + A ∘ C A\circ (B+C)=A\circ B+A\circ C A(B+C)=AB+AC
  • ( A ⊗ B ) ⊗ C = A ⊗ ( B ⊗ C ) (A\otimes B)\otimes C=A\otimes(B\otimes C) (AB)C=A(BC)
    ( A ∘ B ) ∘ C = A ∘ ( B ∘ C ) (A\circ B)\circ C=A\circ (B\circ C) (AB)C=A(BC)
  • ( A ⊗ B ) H = A H ⊗ B H (A\otimes B)^H=A^H\otimes B^H (AB)H=AHBH
    ( A ∘ B ) H = A H ∘ B H (A\circ B)^H=A^H\circ B^H (AB)H=AHBH
  • A ⊗ B ≠ B ⊗ A A\otimes B\neq B\otimes A AB=BA (膨胀的矩阵不同)
    A ∘ B = B ∘ A A\circ B=B\circ A AB=BA

K-积与H-积关系

A ∘ B A\circ B AB 可由 A ⊗ B A\otimes B AB 的元素构成.

K-积与矩阵乘法

( A ⊗ B ) ( C ⊗ D ) = ( A C ) ⊗ ( B D ) \pmb{(A\otimes B)(C\otimes D)=(AC)\otimes(BD)} (AB)(CD)=(AC)(BD)(AB)(CD)=(AC)(BD)(AB)(CD)=(AC)(BD)

6.2 Kronecker 积与 Hadamard 积的性质

K-积的矩阵性质

  • r a n k ( A ⊗ B ) = r a n k ( A ) × r a n k ( B ) rank(A\otimes B)=rank(A)\times rank(B) rank(AB)=rank(A)×rank(B)
  • ( A ⊗ B ) − 1 = A − 1 ⊗ B − 1 (A\otimes B)^{-1}=A^{-1}\otimes B^{-1} (AB)1=A1B1
  • ∣ A m × m ⊗ B n × n ∣ = ∣ B ⊗ A ∣ = ∣ A ∣ n ∣ B ∣ m |A_{m\times m}\otimes B_{n\times n}|=|B\otimes A|=|A|^n|B|^m Am×mBn×n=BA=AnBm (注意 m , n m,n m,n 是放在对方矩阵上)
  • A , B A,B A,B 是 Hermite 矩阵 ⇒ A ⊗ B , B ⊗ A A\otimes B,B\otimes A AB,BA 是 Hermite 矩阵
  • A , B A,B A,B 是酉矩阵 ⇒ A ⊗ B , B ⊗ A A\otimes B,B\otimes A AB,BA 是酉矩阵
  • A , B A,B A,B 是(半)正定矩阵 ⇒ A ⊗ B , B ⊗ A A\otimes B,B\otimes A AB,BA 是(半)正定矩阵

K-积与矩阵等价相似

  • A A A 等价于 B B B A ⊗ I A\otimes I AI 等价于 B ⊗ I B\otimes I BI
  • A ∼ J A , B ∼ J B A\sim J_A,B\sim J_B AJA,BJB ( A ⊗ B ) ∼ ( J A ⊗ J B ) (A\otimes B)\sim(J_A\otimes J_B) (AB)(JAJB)

K-积与特征值特征向量

A ∈ F m × m A\in F^{m\times m} AFm×m, 特征值特征向量为 λ i , x i , i = 1 , 2 , . . . , m \lambda_i,x_i,\quad i=1,2,...,m λi,xi,i=1,2,...,m
B ∈ F n × n B\in F^{n\times n} BFn×n, 特征值特征向量为 μ j , y j , j = 1 , 2 , . . . , n \mu_j,y_j,\quad j=1,2,...,n μj,yj,j=1,2,...,n

  • A ⊗ B A\otimes B AB 的特征值 λ i μ j \lambda_i\mu_j λiμj, 对应特征向量 x i ⊗ y i , i = 1 , 2 , . . . , m ; j = 1 , 2 , . . . , n x_i\otimes y_i,\quad i=1,2,...,m;j=1,2,...,n xiyi,i=1,2,...,m;j=1,2,...,n
  • K-和: A ⊕ B = ( A ⊗ I n ) + ( I m ⊗ B ) A\oplus B=(A\otimes I_n)+(I_m\otimes B) AB=(AIn)+(ImB) 的特征值 λ i + μ j \lambda_i+\mu_j λi+μj, 对应特征向量 x i ⊗ y i , i = 1 , 2 , . . . , m ; j = 1 , 2 , . . . , n x_i\otimes y_i,\quad i=1,2,...,m;j=1,2,...,n xiyi,i=1,2,...,m;j=1,2,...,n
  • P ( A , B ) = ∑ i , j = 0 T c i j A i ⊗ B j P(A,B)=\sum_{i,j=0}^T c_{ij}A^i\otimes B^j P(A,B)=i,j=0TcijAiBj 的特征值: P ( λ r , μ t ) = ∑ i , j = 0 T c i j λ r i μ t j P(\lambda_r,\mu_t)=\sum_{i,j=0}^T c_{ij}\lambda_r^i\mu_t^j P(λr,μt)=i,j=0Tcijλriμtj

K-积与矩阵函数

  • f ( I ⊗ A ) = I ⊗ f ( A ) , S N ( I ⊗ A ) = I ⊗ S N ( A ) f(I\otimes A)=I\otimes f(A),S_N(I\otimes A)=I\otimes S_N(A) f(IA)=If(A),SN(IA)=ISN(A)
  • f ( A ⊗ I ) = f ( A ) ⊗ I , S N ( A ⊗ I ) = S N ( A ) ⊗ I f(A\otimes I)=f(A)\otimes I,S_N(A\otimes I)=S_N(A)\otimes I f(AI)=f(A)I,SN(AI)=SN(A)I
  • e I m ⊗ A = I m ⊗ e A e^{I_m\otimes A}=I_m\otimes e^A eImA=ImeA
  • e A ⊗ I m = e A ⊗ I m e^{A\otimes I_m}=e^A\otimes I_m eAIm=eAIm
  • e A ⊕ B = e A ⊗ e B = e B ⊗ e A e^{A\oplus B}=e^A\otimes e^B=e^B\otimes e^A eAB=eAeB=eBeA

H-积的性质

  • A , B A,B A,B 是(半)正定矩阵 ⇒ A ∘ B = B ∘ A A\circ B=B\circ A AB=BA 是(半)正定矩阵

6.3 矩阵的向量化算子与 Kronecker 积

向量化算子定义

Def 6.2: 设 A ∈ F m × n A\in F^{m\times n} AFm×n m × n m\times n m×n 阶矩阵, A = ( A 1 , A 2 , . . . , A n ) = [ a i j ] m × n A=(A_1,A_2,..., A_n)=[a_{ij}]_{m\times n} A=(A1,A2,...,An)=[aij]m×n, 其中 A i ∈ F m A_i\in F_m AiFm A A A 的第 i i i 列, 则 A A A 的向量算子 Vec ( A ) \text{Vec}(A) Vec(A), 定义为:
Vec ( A ) = [ A 1 A 2 ⋯ A n ] m n = ( a 11 , a 21 , . . . , a m 1 , a 12 , . . . , a m 2 , . . . , a 1 n , . . . , a m n ) T \text{Vec}(A)=\begin{bmatrix} A_1\\ A_2\\ \cdots\\ A_n \end{bmatrix}_{mn}=(a_{11},a_{21},...,a_{m1},a_{12},...,a_{m2},...,a_{1n},...,a_{mn})^T Vec(A)=A1A2Anmn=(a11,a21,...,am1,a12,...,am2,...,a1n,...,amn)T
(将矩阵按列展开, 合成一个一维列向量)

向量化算子性质

  • Vec ( x n ) = Vec ( x T ) = x n \text{Vec}(x_n)=\text{Vec}(x^T)=x_n Vec(xn)=Vec(xT)=xn
  • Vec ( x m × 1 y n × 1 T ) = x ⊗ y \text{Vec}(x_{m\times 1}y_{n\times1}^T)=x\otimes y Vec(xm×1yn×1T)=xy
  • Vec ( a A + b B ) = a Vec ( A ) + b Vec ( b ) \text{Vec}(aA+bB)=a\text{Vec}(A)+b\text{Vec}(b) Vec(aA+bB)=aVec(A)+bVec(b)
  • Vec ( A B C ) = ( C T ⊗ A ) Vec ( B ) \pmb{\text{Vec}(ABC)=(C^T\otimes A)\text{Vec}(B)} Vec(ABC)=(CTA)Vec(B)Vec(ABC)=(CTA)Vec(B)Vec(ABC)=(CTA)Vec(B)
  • Vec ( A X ) = ( I ⊗ A ) Vec ( X ) \text{Vec}(AX)=(I\otimes A)\text{Vec}(X) Vec(AX)=(IA)Vec(X)
  • Vec ( X C ) = ( C T ⊗ I ) Vec ( X ) \text{Vec}(XC)=(C^T\otimes I)\text{Vec}(X) Vec(XC)=(CTI)Vec(X)

向量化算子求解矩阵方程

思路:
A = B + C ⇒ Vec ( A ) = Vec ( B ) + Vec ( C ) A=B+C \Rightarrow \text{Vec}(A)=\text{Vec}(B)+\text{Vec}(C) A=B+CVec(A)=Vec(B)+Vec(C)

  • 一般对未知数 X X X 进行向量化
  • 必要时在 X X X 左右添加 I I I A X B AXB AXB 形式
  • 向量化时为保证等式仍成立, 需要对每个项都选一个矩阵进行向量化
  • 化为先前的 A X = b AX=b AX=b, X ′ ( t ) = A X ( t ) X'(t)=AX(t) X(t)=AX(t) 等形式求解
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值