矩阵论
文章平均质量分 91
PeakCrosser
Rise and Cross.
展开
-
[矩阵论] Unit 0. 线性代数 - 部分知识点整理
向量 α1,α2,...,αn\alpha_1,\alpha_2,...,\alpha_nα1,α2,...,αn 线性无关即 k1α1+k2α2+...+knαn=0⃗k_1\alpha_1+k_2\alpha_2+...+k_n\alpha_n=\vec{0}k1α1+k2α2+...+knαn=0, 要求 k1=k2=...=kn=0k_1=k_2=...=k_n=0k1=k2=...=kn=0.求法:非奇异矩阵 ⟺ 行列式不为 0 矩阵 ⟺ 可逆矩阵 ⟺ 满秩矩阵正定矩阵原创 2022-12-09 21:19:21 · 891 阅读 · 0 评论 -
[矩阵论] Unit 6. 矩阵的 Kronecker 积与 Hadamard 积 - 知识点整理
K-积:Am×n⊗Bs×t=[aijB]ms×nt=[a11B⋯a1nBa21B⋯a2nB⋯⋯⋯am1B⋯amnB]A_{m\times n}\otimes B_{s\times t}=[a_{ij}B]_{ms\times nt}=\begin{bmatrix}a_{11}B&\cdots&a_{1n}B\\a_{21}B&\cdots&a_{2n}B\\\cdots&\cdots&\cdots\\a_{m1}B&\cdots&a_{mn}B\\\end{bmatrix}Am×n⊗Bs×原创 2022-12-09 09:15:43 · 789 阅读 · 0 评论 -
[矩阵论] Unit 5. 矩阵范数 - 知识点整理
Def 5.1: Vn(F)V_n(F)Vn(F) 上的实值函数 ∥⋅∥:Vn(F)→R+\Vert\cdot\Vert:V_n(F)\rightarrow R^+∥⋅∥:Vn(F)→R+ 满足 ∀x∈V\forall x\in V∀x∈V:齐次性: ∀k∈F,∥kx∥=∣k∣ ∥x∥\forall k\in F, \Vert kx\Vert = |k|\ \Vert x\Vert∀k∈F,∥kx∥=∣k∣ ∥x∥三角不等式: ∥x+y∥≤∥x∥+∥y∥\Vert x + y\Vert \leq \原创 2022-12-08 20:21:31 · 1570 阅读 · 0 评论 -
[矩阵论] Unit 4. 矩阵的广义逆 - 知识点整理
Def’ 4.1: 设 A∈Cm×nA\in C^{m\times n}A∈Cm×n左逆:必要条件 ⇒ n=r(BA)≤r(A)≤mn=r(BA)\leq r(A)\leq mn=r(BA)≤r(A)≤m充要条件:⟺ AAA 列满秩(瘦高) n=rank(A)≤mn=rank(A)\leq mn=rank(A)≤m⟺ AHAA^HAAHA 可逆 (AL−1A=((AHA)−1AH)A=InA_L^{-1}A=((A^HA)^{-1}A^H)A=I_nAL−1A=((AHA)−1AH)A=In)原创 2022-12-06 17:17:15 · 988 阅读 · 0 评论 -
[矩阵论] Unit 3. 矩阵的分解 - 知识点整理
Th 3.1 矩阵的 kkk 阶顺主子式: 取矩阵的前 kkk 行、前 kkk 列得到的行列式.Th 3.1: A∈Fn×nA\in F^{n\times n}A∈Fn×n 有唯一 LDV 分解 ⟺ AAA 的顺主子式 ∣Ak∣≠0,k=1,2,...,n−1|A_k|\neq 0, k=1,2,...,n-1∣Ak∣=0,k=1,2,...,n−1, ∣A0∣=1|A_0|=1∣A0∣=1. 其中 D=diag(d1,d2,…,dn),dk=∣Ak∣∣Ak−1∣,k=1,…,nD = diag(原创 2022-12-05 09:37:52 · 1022 阅读 · 0 评论 -
[矩阵论] Unit 2. Jordan 标准形介绍 - 知识点整理
TTT 是 Vn(F)V_n(F)Vn(F) 上的线性变换, TTT 在某组基 {ξ1,ξ2,...ξn}\{\xi_1,\xi_2,...\xi_n\}{ξ1,ξ2,...ξn} 下变换矩阵为对角矩阵 [λ1λ2⋱λn]\begin{bmatrix}\lambda_1& & & \\ &\lambda_2& & \\ & &\ddots& \\ & & &\lambda_n\end{bmatrix}⎣⎢⎢⎡λ1λ2⋱λn⎦⎥⎥⎤ ⟺ T(ξi)=λiξi,i=1,2,...,n原创 2022-12-05 09:34:57 · 1169 阅读 · 0 评论 -
[矩阵论] Unit 1. 线性空间与线性变换 - 知识点整理
Def 1.1: 设 VVV 是一个非空集合(V≠∅V\neq \varnothingV=∅),FFF 是一个数域.在其中定义两种运算, 加法与数乘(满足封闭性):∀α,β∈V,α+β∈V;\forall \alpha,\beta\in V,\alpha+\beta\in V;∀α,β∈V,α+β∈V; ∀α∈V,k∈F,kα∈V\forall\alpha\in V,k\in F,k\alpha\in V∀α∈V,k∈F,kα∈V 并且满足下面 8 条运算性质:5 条运算律:3 个特殊元素:负元(唯原创 2022-12-05 09:32:44 · 1110 阅读 · 0 评论