[矩阵论] Unit 0. 线性代数 - 部分知识点整理

  • 注: 以下内容均由个人整理, 不保证完全准确, 如有纰漏, 欢迎交流讨论
  • 参考: 同济大学数学系. 工程数学线性代数(第六版)[M]. 北京: 高等教育出版社, 2014

线性相关/无关

向量 α 1 , α 2 , . . . , α n \alpha_1,\alpha_2,...,\alpha_n α1,α2,...,αn 线性无关 k 1 α 1 + k 2 α 2 + . . . + k n α n = 0 ⃗ k_1\alpha_1+k_2\alpha_2+...+k_n\alpha_n=\vec{0} k1α1+k2α2+...+knαn=0 , 要求 k 1 = k 2 = . . . = k n = 0 k_1=k_2=...=k_n=0 k1=k2=...=kn=0.
求法:

  1. 构建矩阵等式 [ α 1 , α 2 , . . . , α n ] × [ k 1 , k 2 , . . . , k n ] T = [ 0 , 0 , . . . , 0 ] n [\alpha_1,\alpha_2,...,\alpha_n]\times[k_1,k_2,...,k_n]^T=[0,0,...,0]_n [α1,α2,...,αn]×[k1,k2,...,kn]T=[0,0,...,0]n
  2. 对矩阵 [ α 1 , α 2 , . . . , α n ] [\alpha_1,\alpha_2,...,\alpha_n] [α1,α2,...,αn] 进行行初等变换至最简形.
  3. R ( A ) = n R(A) = n R(A)=n / ∣ A ∣ ≠ 0 |A|\neq 0 A=0 ➔ 向量 α 1 , α 2 , . . . , α n \alpha_1,\alpha_2,...,\alpha_n α1,α2,...,αn 线性无关

非奇异矩阵

非奇异矩阵 ⟺ 行列式不为 0 矩阵 ⟺ 可逆矩阵 ⟺ 满秩矩阵

正定矩阵

正定矩阵 M n × n M^{n\times n} Mn×n: ∀ x ∈ F n , x ≠ 0 ⃗ , x T M x > 0 \forall x\in F^n,x\neq\vec{0},x^TMx > 0 xFn,x=0 ,xTMx>0

线性方程组的解

求解 A x = 0 ⃗ Ax=\vec{0} Ax=0

{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = 0 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = 0 … ⋯ ⋯ ⋯ a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = 0 \begin{cases} a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n=0\\ a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n=0\\ \dots\cdots\cdots\cdots\\ a_{m1}x_1+a_{m2}x_2+\cdots+a_{mn}x_n=0 \end{cases} a11x1+a12x2++a1nxn=0a21x1+a22x2++a2nxn=0am1x1+am2x2++amnxn=0

  1. 转换为矩阵表示
    A = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a m 1 a m 2 ⋯ a m n ] , x = ( x 1 x 2 ⋮ x n ) , A x = 0 ⃗ \pmb{A}=\begin{bmatrix} a_{11}&a_{12}&\cdots&a_{1n}\\ a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots& &\vdots\\ a_{m1}&a_{m2}&\cdots&a_{mn} \end{bmatrix},\pmb{x}=\begin{pmatrix} x_1\\x_2\\\vdots\\x_n \end{pmatrix}, \pmb{Ax=\vec{0}} AAA=a11a21am1a12a22am2a1na2namn,xxx=x1x2xn,Ax=0 Ax=0 Ax=0

  2. A A A 进行行变换得到最简形矩阵 B B B:
    B = [ 1 ⋯ 0 b 11 ⋯ b 1 , n − r ⋮ ⋮ ⋮ ⋮ 0 ⋯ 1 b r 1 ⋯ b r , n − r 0 ⋯ 0 ⋮ ⋮ 0 ⋯ 0 ] \pmb{B}=\begin{bmatrix} 1&\cdots&0&b_{11}&\cdots&b_{1,n-r}\\ \vdots& &\vdots&\vdots& &\vdots\\ 0&\cdots&1&b_{r1}&\cdots&b_{r,n-r}\\ 0& & &\cdots& &0\\ \vdots& & & & &\vdots\\ 0& & &\cdots& &0 \end{bmatrix} BBB=100001b11br1b1,nrbr,nr00

  3. 根据矩阵 B B B 写解(相当于将矩阵 B B B 再转换为方程组):
    具体方法:
    1. 列出所有等式左侧的 x i x_i xi:
    { x 1 = x 2 = ⋯ = x n = \begin{cases} x_1=\\ x_2=\\ \cdots=\\ x_n= \end{cases} x1=x2==xn=
    2. 根据矩阵 B B B 的每一行写出 x i x_i xi 之间的等价关系
    { x 1 = − b 11 x r + 1 − ⋯ − b 1 , n − r x n ⋯ ⋯ ⋯ ⋯ x r = − b r 1 x r + 1 − ⋯ − b r , n − r x n x r + 1 = x r + 1 ⋯ ⋯ ⋯ ⋯ x n = x n \begin{cases} x_1=-b_{11}x_{r+1}-\cdots-b_{1,n-r}x_n\\ \cdots\cdots\cdots\cdots\\ x_r=-b_{r1}x_{r+1}-\cdots-b_{r,n-r}x_n\\ x_{r+1}=x_{r+1}\\ \cdots\cdots\cdots\cdots\\ x_n=x_n \end{cases} x1=b11xr+1b1,nrxnxr=br1xr+1br,nrxnxr+1=xr+1xn=xn
    注: 对于矩阵 B B B 下面的 n − r n-r nr 行全 0 行, 转换时等号左右两边不变即可, 即 x i = x i \pmb{x_i=x_i} xi=xixi=xixi=xi
    3. 对齐后, 以如下列向量的格式看待(可以不写出)
    KaTeX parse error: No such environment: equation at position 9: \begin{̲e̲q̲u̲a̲t̲i̲o̲n̲}̲ \begin{pmatri…
    (可以将方程组 = = = 右边的 x i x_i xi 替换成 c i c_i ci, 即 x 1 = − c 1 b 11 − c 2 b 12 + ⋯ − c n − 2 b 1 , n − r x_1=-c_1b_{11}-c_2b_{12}+\cdots-c_{n-2}b_{1,n-r} x1=c1b11c2b12+cn2b1,nr, 其他 x 2 , . . . , x n x_2,...,x_n x2,...,xn 类似)

  4. 求基础解系:
    结论: 3.中公式(1)中 x i x_i xi 后面的 n − r n-r nr 个列向量即为 n − r n-r nr 个基础解系
    (具体方法-教材中方法, 不推荐): 令自由未知数 x r + 1 , x r + 2 , ⋯   , x n x_{r+1},x_{r+2},\cdots,x_n xr+1,xr+2,,xn 分别取下列 n − r n-r nr 组数:
    ( x r + 1 x r + 2 ⋮ x n ) = ( 1 0 ⋮ 0 ) or ( 0 1 ⋮ 0 ) or ⋯ or ( 0 0 ⋮ 1 ) \begin{pmatrix} x_{r+1}\\x_{r+2}\\\vdots\\x_n \end{pmatrix}=\begin{pmatrix} 1\\0\\\vdots\\0 \end{pmatrix}\text{or}\begin{pmatrix} 0\\1\\\vdots\\0 \end{pmatrix}\text{or}\cdots\text{or}\begin{pmatrix} 0\\0\\\vdots\\1 \end{pmatrix} xr+1xr+2xn=100or010oror001
    (即针对 B B B 中下面 n − r n-r nr 行全 0 的列取 n − r n-r nr 的标准正交基向量)
    得基础解系:
    ξ 1 = ( − b 11 ⋮ − b r 1 1 0 ⋮ 0 ) , ξ 2 = ( − b 12 ⋮ − b r 2 0 1 ⋮ 0 ) , ⋯   , ξ n − r = ( − b 1 , n − r ⋮ − b r , n − r 0 0 ⋮ 1 ) \xi_1=\begin{pmatrix} -b_{11}\\\vdots\\-b_{r1}\\1\\0\\\vdots\\0 \end{pmatrix},\xi_2=\begin{pmatrix} -b_{12}\\\vdots\\-b_{r2}\\0\\1\\\vdots\\0 \end{pmatrix},\cdots,\xi_{n-r}=\begin{pmatrix} -b_{1,n-r}\\\vdots\\-b_{r,n-r}\\0\\0\\\vdots\\1 \end{pmatrix} ξ1=b11br1100,ξ2=b12br2010,,ξnr=b1,nrbr,nr001

    (即针对 B B B 中下面 n − r n-r nr 行全 0 的列只要 n − r n-r nr 个线性无关的向量即可, 得到的解系也会不同)

    基础解系对应的是矩阵 B B B不含有左上角 “1” 的 n − r n-r nr(带有系数 b i j b_{ij} bij)

求解 A x = b Ax=b Ax=b

{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 ⋯ ⋯ ⋯ ⋯ = … a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = b m \begin{cases} a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n&=b_1\\ a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n&=b_2\\ \cdots\cdots\cdots\cdots&=\dots\\ a_{m1}x_1+a_{m2}x_2+\cdots+a_{mn}x_n&=b_m \end{cases} a11x1+a12x2++a1nxna21x1+a22x2++a2nxnam1x1+am2x2++amnxn=b1=b2==bm
有解性判断:

  • 无解 ⟺ R ( A ) < R ( A , b ) R(A) < R(A,b) R(A)<R(A,b)
  • 有唯一解 ⟺ R ( A ) = R ( A , b ) = n R(A)=R(A,b)=n R(A)=R(A,b)=n
  • 有无限多解 ⟺ R ( A ) = R ( A , b ) < n R(A)=R(A,b)< n R(A)=R(A,b)<n

注: n n n 为矩阵 A A A 的列数, 即未知数的个数

求解步骤: 与求解 A x = 0 ⃗ Ax=\vec{0} Ax=0 基本相同, 只需要在 x i x_i xi 的等式右边添加上最简形矩阵 B B B 的最后一列对应元素 d i d_i di, 即:
B = ( 1 ⋯ 0 b 11 ⋯ b 1 , n − r d 1 ⋮ ⋮ ⋮ ⋮ ⋮ 0 ⋯ 1 b r 1 ⋯ b r , n − r d r 0 ⋯ 0 0 ⋮ ⋮ 0 0 ⋯ 0 0 ) \pmb{B}=\left(\begin{array}{cccccc:c} 1&\cdots&0&b_{11}&\cdots&b_{1,n-r}&d_1\\ \vdots& &\vdots&\vdots& &\vdots&\vdots\\ 0&\cdots&1&b_{r1}&\cdots&b_{r,n-r}&d_r\\ 0& & &\cdots& &0&0\\ \vdots& & & & &\vdots&0\\ 0& & &\cdots& &0&0 \end{array}\right) BBB=100001b11br1b1,nrbr,nr00d1dr000
{ x 1 = − b 11 x r + 1 − ⋯ − b 1 , n − r x n + d 1 ⋯ = ⋯ ⋯ ⋯ x r = − b r 1 x r + 1 − ⋯ − b r , n − r x n + d r x r + 1 = x r + 1 ⋯ = ⋯ ⋯ ⋯ x n = x n \begin{cases} x_1&=-b_{11}x_{r+1}-\cdots-b_{1,n-r}x_n\pmb{+d_1}\\ \cdots&=\cdots\cdots\cdots\\ x_r&=-b_{r1}x_{r+1}-\cdots-b_{r,n-r}x_n\pmb{+d_r}\\ x_{r+1}&=x_{r+1}\\ \cdots&=\cdots\cdots\cdots\\ x_n&=x_n \end{cases} x1xrxr+1xn=b11xr+1b1,nrxn+d1+d1+d1==br1xr+1br,nrxn+dr+dr+dr=xr+1==xn

矩阵对角化

把矩阵 A A A 对角化: 对于 n n n 阶矩阵 A A A, 通过相似变换矩阵 P P P 使 P − 1 A P = Λ P^{-1}AP=\Lambda P1AP=Λ对角矩阵.

n n n 阶矩阵 A A A 能对角化(与对角矩阵相似) ⟺ A A A n n n 个线性无关特征向量.

矩阵特征值

A A A n n n 阶矩阵, 如果数 λ \lambda λ n n n 维非零列向量 x x x 使关系式
A x = λ x \pmb{Ax=\lambda x} Ax=λxAx=λxAx=λx
成立, 那么, 这样的数 λ \lambda λ 称为矩阵 A A A 的特征值, 非零向量 x x x 称为 A A A 的对应于特征值 λ \lambda λ 的特征向量.

矩阵秩的不等式

  • 对于矩阵 A B = 0 ⃗ ⇒ r a n k ( A ) + r a n k ( B ) ≤ n \pmb{AB=\vec{0}\Rightarrow rank(A)+rank(B)\leq n} AB=0 rank(A)+rank(B)nAB=0 rank(A)+rank(B)nAB=0 rank(A)+rank(B)n
    证明:令 W W W 为方程 A X = 0 ⃗ AX=\vec{0} AX=0 的解空间, 则 d i m W = n − r a n k ( A ) dimW=n-rank(A) dimW=nrank(A). 因为 A B = 0 ⃗ AB=\vec{0} AB=0 , 因此 B B B 中的任意列向量 β i \beta_i βi 都满足 β i ∈ W , i = 1 , 2 , . . . , n \beta_i\in W, i=1,2,...,n βiW,i=1,2,...,n. 因此 r a n k ( B ) ≤ d i m W rank(B)\leq dimW rank(B)dimW 故有 r a n k ( A ) + r a n k ( B ) ≤ n rank(A)+rank(B)\leq n rank(A)+rank(B)n.
  • 三角不等式: r a n k ( A ) + r a n k ( B ) ≥ r a n k ( A + B ) \pmb{rank(A)+rank(B)\geq rank(A+B)} rank(A)+rank(B)rank(A+B)rank(A)+rank(B)rank(A+B)rank(A)+rank(B)rank(A+B)

置换矩阵

置换矩阵 P P P: 每一行恰有一个 1, 每一列恰有一个 1, 其余为 0.
P − 1 = P T P^{-1}=P^T P1=PT
一个矩阵乘上一个置换矩阵: 所得到的是原来矩阵的横行(置换矩阵在左)或纵列(置换矩阵在右)经过置换后得到的矩阵(左乘行变换, 右乘列变换)

叉乘公式

a × b = ( x 1 , y 1 , z 1 ) × ( x 2 , y 2 , z 2 ) = ∣ i j k x 1 y 1 z 1 x 2 y 2 z 2 ∣ = ( y 1 z 2 − y 2 z 1 ) i − ( x 1 z 2 − x 2 z 1 ) j + ( x 1 y 2 − x 2 y 1 ) k \begin{aligned} a\times b&=(x_1,y_1,z_1)\times(x_2,y_2,z_2)\\ &=\left |\begin{matrix} i&j&k\\ x_1&y_1&z_1\\ x_2&y_2&z_2 \end{matrix}\right |\\ &=(y_1z_2-y_2z_1)i-(x_1z_2-x_2z_1)j+(x_1y_2-x_2y_1)k \end{aligned} a×b=(x1,y1,z1)×(x2,y2,z2)=ix1x2jy1y2kz1z2=(y1z2y2z1)i(x1z2x2z1)j+(x1y2x2y1)k

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值