[矩阵论] Unit 5. 矩阵范数 - 知识点整理

  • 注: 以下内容均由个人整理, 不保证完全准确, 如有纰漏, 欢迎交流讨论
  • 参考: 杨明, 刘先忠. 矩阵论(第二版)[M]. 武汉: 华中科技大学出版社, 2005

5 矩阵范数

5.1 向量范数

向量范数概念

Def 5.1: V n ( F ) V_n(F) Vn(F) 上的实值函数 ∥ ⋅ ∥ : V n ( F ) → R + \Vert\cdot\Vert:V_n(F)\rightarrow R^+ :Vn(F)R+ 满足 ∀ x ∈ V \forall x\in V xV:

  • 正定性: ∥ x ∥ ≥ 0 \Vert x\Vert\geq 0 x0, ∥ x ∥ = 0 ⇔ x = 0 ⃗ \Vert x\Vert=0\Leftrightarrow x=\vec{0} x=0x=0
  • 齐次性: ∀ k ∈ F , ∥ k x ∥ = ∣ k ∣   ∥ x ∥ \forall k\in F, \Vert kx\Vert = |k|\ \Vert x\Vert kF,kx=k x
  • 三角不等式: ∥ x + y ∥ ≤ ∥ x ∥ + ∥ y ∥ \Vert x + y\Vert \leq \Vert x \Vert + \Vert y \Vert x+yx+y

则称 ∥ ⋅ ∥ \Vert \cdot \Vert V n ( F ) V_n(F) Vn(F) 上的范数, [ V n ( F ) ; ∥ ⋅ ∥ ] [V_n(F); \Vert\cdot\Vert] [Vn(F);] 是赋范空间

Hölder 范数(p-范数): ∥ x ∥ p = ( ∑ i = 1 n ∣ x i ∣ p ) 1 p \Vert x\Vert_p=(\sum_{i=1}^n|x_i|^p)^{\frac{1}{p}} xp=(i=1nxip)p1

  • p = 1 , ∥ x ∥ 1 = ∑ i = 1 n ∣ x i ∣ p=1,\Vert x\Vert_1=\sum_{i=1}^n|x_i| p=1,x1=i=1nxi
  • p = 2 , ∥ x ∥ 2 = ∑ i = 1 n ∣ x i ∣ 2 p=2,\Vert x\Vert_2=\sqrt{\sum_{i=1}^n|x_i|^2} p=2,x2=i=1nxi2
  • p = ∞ , ∥ x ∥ ∞ = m a x { ∣ x i ∣ , 1 ≤ i ≤ n } p=\infty,\Vert x\Vert_\infty=max\{|x_i|,1\leq i\leq n\} p=,x=max{xi,1in}

向量范数收敛性质

向量范数的连续性: ∣ a − b ∥ → 0   ⇒   ∣ ∥ α ∥ − ∥ β ∥ ∣ → 0 \vert a-b\Vert\rightarrow0\ \Rightarrow\ |\Vert\alpha\Vert-\Vert\beta\Vert|\rightarrow 0 ab0  αβ0
向量范数是坐标的连续函数.

向量范数等价性

有限维线性空间 V n ( F ) V_n(F) Vn(F) 的任意两种向量范数都是等价的.
∥ α ∥ ( 1 ) → 0   ⇒   ∥ α ∥ ( 2 ) → 0 \Vert\alpha\Vert^{(1)}\rightarrow 0\ \Rightarrow\ \Vert\alpha\Vert^{(2)}\rightarrow 0 α(1)0  α(2)0

5.2 矩阵范数

矩阵范数概念

Def 5.3: F n × n F^{n×n} Fn×n 上的实值函数 ∥ ⋅ ∥ : F n × n → R + \Vert\cdot\Vert:F^{n×n}\rightarrow R^+ :Fn×nR+ 满足 ∀ A ∈ F n × n \forall A\in F^{n×n} AFn×n:

  • 正定性: ∥ A ∥ ≥ 0 \Vert A\Vert\geq 0 A0, ∥ A ∥ = 0 ⇔ A = 0 \Vert A\Vert=0\Leftrightarrow A=0 A=0A=0
  • 齐次性: ∀ k ∈ F , ∥ k A ∥ = ∣ k ∣   ∥ A ∥ \forall k\in F, \Vert kA\Vert = |k|\ \Vert A\Vert kF,kA=k A
  • 三角不等式: ∥ A + B ∥ ≤ ∥ A ∥ + ∥ B ∥ \Vert A + B\Vert \leq \Vert A \Vert + \Vert B \Vert A+BA+B
  • 相容性: ∥ A B ∥ ≤ ∥ A ∥   ∥ B ∥ \Vert AB\Vert\leq\Vert A\Vert\ \Vert B\Vert ABA B

则称 ∥ ⋅ ∥ \Vert\cdot\Vert 为矩阵范数.

常见矩阵范数:

  • ∥ A ∥ = ∑ i = 1 n ∑ j = 1 n ∣ a i j ∣ \Vert A\Vert=\sum_{i=1}^n\sum_{j=1}^n|a_{ij}| A=i=1nj=1naij
  • F-范数: ∥ A ∥ F = ( ∑ i = 1 n ∑ j = 1 n ∣ a i j ∣ 2 ) 1 2 = t r ( A H A ) 1 2 = σ 1 2 + σ 2 2 + . . . + σ r 2 \Vert A\Vert_F=\left (\sum_{i=1}^n\sum_{j=1}^n|a_{ij}|^2\right)^{\frac{1}{2}}=tr(A^HA)^{\frac{1}{2}}=\sqrt{\sigma_1^2+\sigma_2^2+...+\sigma_r^2} AF=(i=1nj=1naij2)21=tr(AHA)21=σ12+σ22+...+σr2

矩阵范数性质:
∀ ∥ A ∥ \forall\Vert A\Vert A:

  • ∥ I ∥ ≥ 1 \Vert I\Vert\geq 1 I1
    ( ∥ I ∥ = ∥ I ⋅ I ∥ ≤ ∥ I ∥ ⋅ ∥ I ∥ \Vert I\Vert=\Vert I\cdot I\Vert\leq\Vert I\Vert\cdot\Vert I\Vert I=IIII)
  • ∥ A n ∥ ≤ ∥ A ∥ n \Vert A^n\Vert\leq\Vert A\Vert^n AnAn
    ( ∥ A B ∥ ≤ ∥ A ∥ ⋅ ∥ B ∥ \Vert AB\Vert\leq\Vert A\Vert\cdot\Vert B\Vert ABAB)
  • ∥ A − 1 ∥ ≥ ∥ A ∥ − 1 \Vert A^{-1}\Vert\geq\Vert A\Vert^{-1} A1A1
    ( ∥ I ∥ = ∥ A ⋅ A − 1 ∥ ≤ ∥ A ∥ ⋅ ∥ A − 1 ∥ \Vert I\Vert=\Vert A\cdot A^{-1}\Vert\leq\Vert A\Vert\cdot\Vert A^{-1}\Vert I=AA1AA1)
  • A ∼ 酉 B ⇒ ∥ A ∥ F = ∥ B ∥ F A\overset{酉}{\sim}B\Rightarrow\Vert A\Vert_F=\Vert B\Vert_F ABAF=BF

诱导范数

Def 5.4 向量范数与矩阵范数相容: 设 ∥ x ∥ \Vert x\Vert x 是向量范数 , ∥ A ∥ \Vert A\Vert A 是矩阵范数, 若 ∥ A x ∥ ≤ ∥ A ∥ ⋅ ∥ x ∥ \Vert Ax\Vert\leq\Vert A\Vert\cdot\Vert x\Vert AxAx, 则称矩阵范数 ∥ A ∥ \Vert A\Vert A 与向量范数 ∥ x ∥ \Vert x\Vert x 是相容的.

Th 5.3: 设 ∥ x ∥ \Vert x\Vert x 是向量范数, 则 ∥ A ∥ = m a x x ≠ 0 { ∥ A x ∥ ∥ x ∥ } \Vert A\Vert=max_{x\neq0}\left\{\frac{\Vert Ax\Vert}{\Vert x\Vert}\right\} A=maxx=0{xAx} 是与之相容的矩阵范数, 称为由向量范数 ∥ x ∥ \Vert x\Vert x 诱导的矩阵范数.

p-范数诱导的矩阵范数:

  • ∥ A ∥ 1 = m a x j { ∑ i = 1 n ∣ a i j ∣ } \Vert A\Vert_1=max_j\left\{\sum_{i=1}^{n}|a_{ij}|\right\} A1=maxj{i=1naij} 最大列和范数
  • ∥ A ∥ ∞ = m a x i { ∑ j = 1 n ∣ a i j ∣ } \Vert A\Vert_\infty=max_i\left\{\sum_{j=1}^{n}|a_{ij}|\right\} A=maxi{j=1naij} 最大行和范数
  • ∥ A ∥ 2 = λ m a x = σ 1 \Vert A\Vert_2=\sqrt{\lambda_{max}}=\sigma_1 A2=λmax =σ1, λ m a x \lambda_{max} λmax A H A A^HA AHA 最大特征值 谱范数

5.3 向量序列和矩阵序列的极限

按分量(元素)收敛

向量序列 x k = ( x 1 ( k ) , x 2 ( k ) , . . . , x n ( k ) ) T ∈ C n , k = 1 , 2 , . . . x^{k}=(x_1^{(k)},x_2^{(k)},...,x_n^{(k)})^T\in C^n,k=1,2,... xk=(x1(k),x2(k),...,xn(k))TCn,k=1,2,... (向量的每个分量都是关于 k k k 的表达式)
按分量收敛 ⟺ x 1 ( k ) , x 2 ( k ) , . . . , x n ( k ) x_1^{(k)},x_2^{(k)},...,x_n^{(k)} x1(k),x2(k),...,xn(k) 收敛, 即 lim ⁡ k → ∞ x i ( k ) = a i , 1 ≤ i ≤ n \lim\limits_{k\rightarrow \infty}x_i^{(k)}=a_i,1\leq i\leq n klimxi(k)=ai,1in
记为 lim ⁡ k → ∞ x ( k ) = a = ( a 1 , a 2 , . . . , a n ) T \lim\limits_{k\rightarrow \infty}x^{(k)}=a=(a_1,a_2,...,a_n)^T klimx(k)=a=(a1,a2,...,an)T

矩阵序列 A ( k ) = ( a i j ( k ) ) ∈ C n × n , k = 1 , 2 , . . . A^{(k)}=(a_{ij}^{(k)})\in C^{n\times n},k=1,2,... A(k)=(aij(k))Cn×n,k=1,2,...
按元素收敛 ⟺ a i j ( k ) a_{ij}^{(k)} aij(k) 均收敛, 即 lim ⁡ k → ∞ a i j ( k ) = a i j , 1 ≤ i , j ≤ n \lim\limits_{k\rightarrow \infty}a_{ij}^{(k)}=a_{ij},1\leq i,j\leq n klimaij(k)=aij,1i,jn
记为 lim ⁡ k → ∞ A ( k ) = A = ( a i j ) \lim\limits_{k\rightarrow \infty}A^{(k)}=A=(a_{ij}) klimA(k)=A=(aij)

按范数收敛

向量序列 { x ( k ) } \{x^{(k)}\} {x(k)} 按范数 ∥ x ∥ \Vert x\Vert x 收敛于 a a a lim ⁡ k → ∞ ∥ x ( k ) − a ∥ = 0 \lim\limits_{k\rightarrow\infty}\Vert x^{(k)}-a\Vert=0 klimx(k)a=0
矩阵序列 { A ( k ) } \{A^{(k)}\} {A(k)} 按范数 ∥ A ∥ \Vert A\Vert A 收敛于 A A A lim ⁡ k → ∞ ∥ A ( k ) − A ∥ = 0 \lim\limits_{k\rightarrow\infty}\Vert A^{(k)}-A\Vert=0 klimA(k)A=0

按分量(元素)收敛与按范数收敛的关系

按分量(元素)收敛 ⟺ 按任意给定的范数收敛

收敛序列性质

a , b ∈ F , A n × n ( k ) → A , B n × n ( k ) → B a,b\in F, A_{n\times n}^{(k)}\rightarrow A,B_{n\times n}^{(k)}\rightarrow B a,bF,An×n(k)A,Bn×n(k)B

  • a A n × n ( k ) + b B n × n ( k ) → a A + b B aA_{n\times n}^{(k)}+bB_{n\times n}^{(k)}\rightarrow aA+bB aAn×n(k)+bBn×n(k)aA+bB
  • A n × n ( k ) B n × n ( k ) → A B A_{n\times n}^{(k)}B_{n\times n}^{(k)}\rightarrow AB An×n(k)Bn×n(k)AB
  • ∣ A n × n ( k ) ∣ → ∣ A ∣ |A_{n\times n}^{(k)}|\rightarrow |A| An×n(k)A, ∥ A n × n ( k ) ∥ → ∥ A ∥ \Vert A_{n\times n}^{(k)}\Vert\rightarrow \Vert A\Vert An×n(k)A
  • ( A n × n ( k ) ) − 1 → A − 1 (A_{n\times n}^{(k)})^{-1}\rightarrow A^{-1} (An×n(k))1A1

收敛矩阵 A A A: lim ⁡ k → ∞ A k → 0 \lim\limits_{k\rightarrow\infty}A^k\rightarrow0 klimAk0

5.4 矩阵幂级数

谱半径

Def’ 5.11 谱半径: 设矩阵 A ∈ C n × n A\in C^{n\times n} ACn×n 的谱为 { λ 1 , . . . , λ s } \{\lambda_1,...,\lambda_s\} {λ1,...,λs}, 则谱半径为 ρ ( A ) = m a x { ∣ λ i ∣ , 1 ≤ i ≤ s } \rho(A)=max\{|\lambda_i|,1\leq i\leq s\} ρ(A)=max{λi,1is} (最大特征值的模).

谱半径性质:

  • ρ ( A k ) = ( ρ ( A ) ) k \rho(A^k)=(\rho(A))^k ρ(Ak)=(ρ(A))k
  • ρ ( k A ) = ∣ k ∣ ρ ( A ) \rho(kA)=|k|\rho(A) ρ(kA)=kρ(A)
  • ρ ( A ) = ρ ( A T ) \rho(A)=\rho(A^T) ρ(A)=ρ(AT)
  • A ∼ B ⇒ ρ ( A ) = ρ ( B ) A\sim B\Rightarrow\rho(A)=\rho(B) ABρ(A)=ρ(B)
  • 正规矩阵 A A A ρ ( A ) = ∥ A ∥ 2 = σ 1 \rho(A)=\Vert A\Vert_2=\sigma_1 ρ(A)=A2=σ1, 其中 ∥ A ∥ 2 \Vert A\Vert_2 A2 是谱范数
  • A k → 0 ⇔ ρ ( A ) < 1 A^k\rightarrow0\Leftrightarrow\rho(A)<1 Ak0ρ(A)<1
  • ρ ( A ) ≤ ∥ A ∥ \rho(A)\leq\Vert A\Vert ρ(A)A, 其中 ∥ A ∥ \Vert A\Vert A 为任一范数
    含义: 谱半径是任何矩阵范数的下确界(下界中最大的)
  • ∀ ϵ > 0 , ∃ ∥ A ∥ ∗ : ∥ A ∥ ∗ ≤ ρ ( A ) + ϵ \forall \epsilon>0,\exists\Vert A\Vert^*:\Vert A\Vert^*\leq\rho(A)+\epsilon ϵ>0,A:Aρ(A)+ϵ

幂级数收敛性

Def 5.12 矩阵幂级数: 设 A ∈ C n × n , a k ∈ C , k = 0 , 1 , 2... A\in C^{n\times n}, a_k\in C, k=0,1,2... ACn×n,akC,k0,1,2...
a 0 I + a 1 A + a 2 A 2 + . . . + a k A k + . . . a_0I+a_1A+a_2A^2+...+a_kA^k+... a0I+a1A+a2A2+...+akAk+...
为矩阵 A A A 的幂级数, 记为 ∑ k = 0 ∞ a k A k \sum_{k=0}^\infty a_kA^k k=0akAk
Def’ 5.13 矩阵幂级数的部分和 S N ( A ) = ∑ k = 0 N a k A k S_N(A)=\sum_{k=0}^N a_kA^k SN(A)=k=0NakAk
∑ k = 0 ∞ a k A k \sum_{k=0}^\infty a_kA^k k=0akAk 收敛 ⟺ { S N ( A ) } \{S_N(A)\} {SN(A)} 部分和序列收敛 (每一个部分和都收敛)

幂级数与谱半径

复数项幂级数 f ( z ) = ∑ k = 0 ∞ a k z k f(z)=\sum_{k=0}^\infty a_kz^k f(z)=k=0akzk 收敛半径为 R R R, 即 ∑ k = 0 ∞ a k d n z k d z n = d n f ( z ) d z n \sum_{k=0}^\infty a_k\frac{d^nz^k}{dz^n}=\frac{d^nf(z)}{dz^n} k=0akdzndnzk=dzndnf(z) ∣ z ∣ < R |z|< R z<R 收敛.

收敛半径求法:
对幂级数 ∑ k = 0 ∞ a k z k \sum_{k=0}^\infty a_kz^k k=0akzk, 收敛半径(只看系数 a k a_k ak):

  • 比值法: R = lim ⁡ k → ∞ ∣ a k a k + 1 ∣ R=\lim\limits_{k\rightarrow\infty}\left|\frac{a_k}{a_{k+1}}\right| R=klimak+1ak
  • 根值法: R = lim ⁡ k → ∞ 1 ∣ a k ∣ k R=\lim\limits_{k\rightarrow\infty}\frac{1}{\sqrt[k]{|a_k|}} R=klimkak 1

收敛性判别:

  • ρ ( A ) < R \rho(A)< R ρ(A)<R ∑ k = 0 ∞ a k A k \sum_{k=0}^\infty a_kA^k k=0akAk 收敛
    ρ ( A ) ≤ ∥ A ∥ < R \rho(A)\leq\Vert A\Vert < R ρ(A)A<R ∑ k = 0 ∞ a k A k \sum_{k=0}^\infty a_kA^k k=0akAk 收敛
  • ρ ( A ) > R \rho(A)> R ρ(A)>R ∑ k = 0 ∞ a k A k \sum_{k=0}^\infty a_kA^k k=0akAk 发散
  • ρ ( A ) = R \rho(A)= R ρ(A)=R 收敛性不确定, 需要计算 Jordan 标准形来判断

5.5 矩阵函数

矩阵函数

f ( z ) f(z) f(z) 是复变量的解析函数, f ( z ) = ∑ k = 0 ∞ a k z k f(z)=\sum_{k=0}^\infty a_kz^k f(z)=k=0akzk 的收敛半径为 R R R. 如果矩阵 A ∈ C n × n A\in C^{n\times n} ACn×n 的谱半径 ρ ( A ) < R \rho(A)<R ρ(A)<R(幂级数收敛),则称
f ( A ) = ∑ k = 0 ∞ a k A k f(A)=\sum_{k=0}^\infty a_kA^k f(A)=k=0akAk
A A A 的矩阵函数.

常见矩阵函数

  • e A = ∑ k = 0 ∞ 1 k ! A k , ρ ( A ) < + ∞ e^A=\sum_{k=0}^\infty\frac{1}{k!}A^k,\rho(A)<+\infty eA=k=0k!1Ak,ρ(A)<+
  • ( I − A ) − 1 = ∑ k = 0 ∞ A k , ρ ( A ) < 1 (I-A)^{-1}=\sum_{k=0}^\infty A^k,\rho(A) < 1 (IA)1=k=0Ak,ρ(A)<1
  • ln ⁡ ( I + A ) = ∑ k = 0 ∞ ( − 1 ) k − 1 k A k , ρ ( A ) < 1 \ln(I+A)=\sum_{k=0}^\infty\frac{(-1)^{k-1}}{k}A^k,\rho(A)<1 ln(I+A)=k=0k(1)k1Ak,ρ(A)<1
  • ( I + A ) − 1 = ∑ k = 0 ∞ ( − 1 ) k A k , ρ ( A ) < 1 (I+A)^{-1}=\sum_{k=0}^\infty(-1)^kA^k,\rho(A)<1 (I+A)1=k=0(1)kAk,ρ(A)<1
  • ln ⁡ ( I − A ) = − ∑ k = 0 ∞ 1 k A k , ρ ( A ) < 1 \ln(I-A)=-\sum_{k=0}^\infty\frac{1}{k}A^k,\rho(A) < 1 ln(IA)=k=0k1Ak,ρ(A)<1

函数 e A e^A eA 的性质

  • A B = B A AB=BA AB=BA e A e B = e B e A = e A + B e^Ae^B=e^Be^A=e^{A+B} eAeB=eBeA=eA+B
  • e 0 = I , e I = e I e^0=I,e^I=eI e0=I,eI=eI
  • ( e A ) − 1 = e − A (e^A)^{-1}=e^{-A} (eA)1=eA

矩阵函数 Jordan 标准形求法

目标: 求矩阵 A A A 的矩阵函数 f ( A ) f(A) f(A)

  1. 计算矩阵 A A A J A J_A JA P P P 以及 P − 1 P^{-1} P1: A ∼ P J A P − 1 A\sim PJ_AP^{-1} APJAP1
    f ( A ) = P ⋅ f ( J A ) ⋅ P − 1 = P ⋅ d i a g ( f ( J 1 ) , f ( J 2 ) , . . . , f ( J k ) ) ⋅ P − 1 f(A)=P\cdot f(J_A)\cdot P^{-1}= P\cdot diag(f(J_1),f(J_2),...,f(J_k))\cdot P^{-1} f(A)=Pf(JA)P1=Pdiag(f(J1),f(J2),...,f(Jk))P1
    其中 J i J_i Ji 为每个 Jordan 块
  2. 对于每个 Jordan 块 J i ( λ ) J_i(\lambda) Ji(λ)
    f ( J i ) = [ f ( λ ) f ′ ( λ ) g ′ ′ ( λ ) 2 ! ⋯ g r − 1 ( λ ) ( r − 1 ) ! f ( λ ) f ′ ( λ ) ⋱ ⋮ f ( λ ) ⋱ f ′ ′ ( λ ) 2 ! ⋱ f ′ ( λ ) f ( λ ) ] f(J_i)=\begin{bmatrix} f(\lambda)&f'(\lambda)&\frac{g''(\lambda)}{2!}&\cdots&\frac{g^{r-1}(\lambda)}{(r-1)!}\\ &f(\lambda)&f'(\lambda)&\ddots&\vdots\\ & &f(\lambda)&\ddots&\frac{f''(\lambda)}{2!}\\ & & &\ddots&f'(\lambda)\\ & & & &f(\lambda) \end{bmatrix} f(Ji)=f(λ)f(λ)f(λ)2!g(λ)f(λ)f(λ)(r1)!gr1(λ)2!f(λ)f(λ)f(λ)
    最终由 f ( J i ) f(J_i) f(Ji) 组成矩阵 f ( J A ) f(J_A) f(JA)
  3. f ( A ) = P ⋅ f ( J A ) ⋅ P − 1 f(A)=P\cdot f(J_A)\cdot P^{-1} f(A)=Pf(JA)P1 计算得到通式 f ( A ) f(A) f(A)
  4. 具体的 f ( λ ) , f ′ ( λ ) f(\lambda),f'(\lambda) f(λ),f(λ) 的值 (如 λ = 2 : e 2 , s i n 2 \lambda=2: e^2,sin2 λ=2:e2,sin2) 去替换 f ( A ) f(A) f(A) 中的相应的 f ( λ ) , f ′ ( λ ) f(\lambda),f'(\lambda) f(λ),f(λ)

矩阵函数最小多项式求法

目标: 求矩阵 A A A 的矩阵函数 f ( A ) f(A) f(A)

  1. 求矩阵 A A A J A J_A JA 从而得到其最小多项式 m A ( λ ) m_A(\lambda) mA(λ)
  2. 根据 m A ( λ ) m_A(\lambda) mA(λ) 次数设函数 g ( λ ) = c 0 + c 1 λ + . . . + c m − 1 λ m − 1 g(\lambda)=c_0+c_1\lambda+...+c_{m-1}\lambda^{m-1} g(λ)=c0+c1λ+...+cm1λm1 g ( λ ) g(\lambda) g(λ) 满足
  3. g ( λ ) g(\lambda) g(λ)每个特征值在每个次数的导数值都与 f ( λ ) f(\lambda) f(λ) 相等, 并由此构建方程, 求 g ( λ ) g(\lambda) g(λ) 的每个参数 c 0 , c 1 , . . . , c m − 1 c_0,c_1,...,c_{m-1} c0,c1,...,cm1.
    g ( j ) ( λ i ) = f ( j ) ( λ i ) , i = 1 , 2 , . . . , s , j = 0 , 1 , . . . , n − 1 g^{(j)}(\lambda_i)=f^{(j)}(\lambda_i),i=1,2,...,s,\quad j=0,1,...,n-1 g(j)(λi)=f(j)(λi),i=1,2,...,s,j=0,1,...,n1
  4. g ( λ ) g(\lambda) g(λ) 得到 g ( A ) = c 0 I + c 1 A + . . . + c m − 1 A m − 1 g(A)=c_0I+c_1A+...+c_{m-1}A^{m-1} g(A)=c0I+c1A+...+cm1Am1 的值, 也即 f ( A ) f(A) f(A) 的值.

5.6 函数矩阵的微分与积分

A ( t ) A(t) A(t) 连续、可微分、可积分 ⟺ a i j ( t ) a_{ij}(t) aij(t) 连续、可微分、可积分

5.7 矩阵函数的应用

微分方程组的一般形式

X ′ ( t ) = A ( t ) X ( t ) + f ( t ) , X ( t 0 ) = C 0 X'(t)=A(t)X(t)+f(t),\quad X(t_0)=C_0 X(t)=A(t)X(t)+f(t),X(t0)=C0
d d t [ x 1 ( t ) x 2 ( t ) ⋮ x n ( t ) ] = [     a i j   ] [ x 1 ( t ) x 2 ( t ) ⋮ x n ( t ) ] + [ f 1 ( t ) f 2 ( t ) ⋮ f n ( t ) ] \frac{d}{dt}\begin{bmatrix} x_1(t)\\ x_2(t)\\ \vdots\\ x_n(t) \end{bmatrix}=\begin{bmatrix} \ & & \\ \ &a_{ij}& \\ \ & & & \end{bmatrix}\begin{bmatrix} x_1(t)\\ x_2(t)\\ \vdots\\ x_n(t) \end{bmatrix}+\begin{bmatrix} f_1(t)\\ f_2(t)\\ \vdots\\ f_n(t) \end{bmatrix} dtdx1(t)x2(t)xn(t)=   aijx1(t)x2(t)xn(t)+f1(t)f2(t)fn(t)

一阶线性常系数齐次微分方程组

求解: X ′ ( t ) = A X ( t ) , X ( t 0 ) = C 0 X'(t)=AX(t),\quad X(t_0)=C_0 X(t)=AX(t),X(t0)=C0 (常系数: A A A, 齐次:没有 f ( t ) f(t) f(t))

解:
X ( t ) = e A ( t − t 0 ) X ( t 0 ) \pmb{X(t)=e^{A(t-t_0)}X(t_0)} X(t)=eA(tt0)X(t0)X(t)=eA(tt0)X(t0)X(t)=eA(tt0)X(t0)

一阶线性常系数非齐次微分方程组

求解: X ′ ( t ) = A X ( t ) + f ( t ) , X ( t 0 ) = C 0 X'(t)=AX(t)+f(t),\quad X(t_0)=C_0 X(t)=AX(t)+f(t),X(t0)=C0 (常系数: A A A)

解:
X ( t ) = e A ( t − t 0 ) X ( t 0 ) + ∫ t 0 t e A ( t − s ) f ( s ) d s X(t)=e^{A(t-t_0)}X(t_0)+\int_{t_0}^te^{A(t-s)}f(s)ds X(t)=eA(tt0)X(t0)+t0teA(ts)f(s)ds

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值