构建智能体绝非无本之木,其最显著的成本之一即大语言模型中的token消耗。鉴于智能体内部集成了反思机制与深度学习技术,其token消耗量较传统大语言模型显著增加。更进一步,当涉及多智能体系统时,除了各自的运算成本外,还额外引入了交互层面的资源消耗。特别是在多智能体间陷入无效讨论或错误循环时,无效成本将急剧攀升。因此,针对智能体进行成本效益分析及优化策略的制定,对于提升其效能而言至关重要。在商用智能体领域,更高级别的大语言模型虽然能够带来更为卓越的用户体验,但这一优势往往伴随着成本的急剧膨胀。以当前市场为例,GPT4的价格相较于GPT3.5 turbo高出十倍之多。加之智能体间复杂的交互特性,使得在任务执行过程中token的消耗更为显著。若遇到需要生成超出基础模型token限制的长文内容,用户不得不选择更高规格的模型如GPT4-32K,而这又将导致成本再次翻倍,较GPT4更为昂贵。
下图是open ai官方的token定价。
在实际应用场景中,当使用搭载GPT4的智能体模型来查找并总结梳理5家上市公司的股价新闻时,单次操作的token消耗高达42,000个,直接成本为1.5美元。若将此模式扩展至日常运营,假设每天需要处理并统计约120家公司的股票新闻,那么根据比例计算,每日的token消耗将急剧增加,导致总成本攀升至35.8美元。进一步换算成人民币,按照1美元兑换7.14元人民币的汇率,这一成本相当于255.5元人民币。
值得注意的是,智能体虽强大,但并非无懈可