华为云GPU服务器使用PaddleServing方式部署PaddleClas多个自己训练的识别模型服务

前言

最近公司需要对图片中的不同的货车品牌和车系进行识别,通过PaddleClas进行模型训练后得到一个品牌识别模型和一个车系识别模型,现在对两个模型部署到一台华为云的GPU服务器上,要对多个模型同时进行部署,只能采取PaddleServing中的 Pipeline 服务或者C++ serving服务进行部署,由于C++ serving需要编译源码,比较麻烦,所以下面采用Pipeline 方式对多个模型进行串联部署。

如何在华为云服务器上搭建GPU版本的PaddlePaddle环境请参考以下文章: https://blog.csdn.net/loutengyuan/article/details/126527326

环境准备

需要准备PaddleClas的运行环境和Paddle Serving的运行环境。

  • 准备PaddleClas的运行环境链接
# 克隆代码
git clone https://github.com/PaddlePaddle/PaddleClas
  • 安装PaddleServing的运行环境,步骤如下
# 安装serving,用于启动服务
wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.8.3.post102-py3-none-any.whl
pip3 install paddle_serving_server_gpu-0.8.3.post102-py3-none-any.whl

# 安装client,用于向服务发送请求
wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_client-0.8.3-cp38-none-any.whl
pip3 install paddle_serving_client-0.8.3-cp38-none-any.whl

# 安装serving-app
wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_app-0.8.3-py3-none-any.whl
pip3 install paddle_serving_app-0.8.3-py3-none-any.whl

服务数据准备

使用 PaddleServing 做图像识别服务化部署时,需要将保存的多个 inference 模型都转换为 Serving 模型。

模型转换

进入工作目录:

cd PaddleClas/deploy/

创建并进入models文件夹:

# 创建并进入models文件夹
mkdir models
cd models

将训练好的inference 模型放到该文件夹下,包括检测模型(picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer)、品牌识别模型(rec_brands_v1.0_infer)和车系识别模型(rec_series_v1.0_infer)结构如下:

├── picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer
│   ├── infer_cfg.yml
│   ├── inference.pdiparams
│   ├── inference.pdiparams.info
│   └── inference.pdmodel
├── rec_brands_v1.0_infer
│   ├── inference.pdiparams
│   ├── inference.pdiparams.info
│   └── inference.pdmodel
└── rec_series_v1.0_infer
    ├── inference.pdiparams
    ├── inference.pdiparams.info
    ├── inference.pdmodel
    └── readme.txt

转换通用检测 inference 模型为 Serving 模型:

# 转换通用检测模型
python3.8 -m paddle_serving_client.convert --dirname ./picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer/ \
--model_filename inference.pdmodel  \
--params_filename inference.pdiparams \
--serving_server ./picodet_PPLCNet_x2_5_mainbody_lite_v1.0_serving/ \
--serving_client ./picodet_PPLCNet_x2_5_mainbody_lite_v1.0_client/

通用检测 inference 模型转换完成后,会在当前文件夹多出 picodet_PPLCNet_x2_5_mainbody_lite_v1.0_serving/和 picodet_PPLCNet_x2_5_mainbody_lite_v1.0_client/ 的文件夹,具备如下结构:

    ├── picodet_PPLCNet_x2_5_mainbody_lite_v1.0_serving/
    │   ├── inference.pdiparams
    │   ├── inference.pdmodel
    │   ├── serving_server_conf.prototxt
    │   └── serving_server_conf.stream.prototxt
    │
    └── picodet_PPLCNet_x2_5_mainbody_lite_v1.0_client/
          ├── serving_client_conf.prototxt
          └── serving_client_conf.stream.prototxt

转换品牌识别 inference 模型为 Serving 模型:

  # 转换品牌识别模型
  python3.8 -m paddle_serving_client.convert \
  --dirname ./rec_brands_v1.0_infer/ \
  --model_filename inference.pdmodel  \
  --params_filename inference.pdiparams \
  --serving_server ./rec_brands_v1.0_serving/ \
  --serving_client ./rec_brands_v1.0_client/

品牌识别 inference 模型转换完成后,会在当前文件夹多出 rec_brands_v1.0_serving/ 和 rec_brands_v1.0_client/ 的文件夹,具备如下结构:

    ├── rec_brands_v1.0_serving/
    │   ├── inference.pdiparams
    │   ├── inference.pdmodel
    │   ├── serving_server_conf.prototxt
    │   └── serving_server_conf.stream.prototxt
    │
    └── rec_brands_v1.0_client/
          ├── serving_client_conf.prototxt
          └── serving_client_conf.stream.prototxt

分别修改 rec_brands_v1.0_serving/rec_brands_v1.0_client/ 目录下的 serving_server_conf.prototxt 中的 alias 名字: 将 fetch_var 中的 alias_name 改为 features。 修改后的 serving_server_conf.prototxt 内容如下:

feed_var {
	name: "x"
	alias_name: "x"
	is_lod_tensor: false
	feed_type: 1
	shape: 3
	shape: 224
	shape: 224
}
fetch_var {
	name: "save_infer_model/scale_0.tmp_1"
	alias_name: "features"
	is_lod_tensor: false
	fetch_type: 1
	shape: 512
}

转换车系识别 inference 模型为 Serving 模型:

  # 转换车系识别模型
  python3.8 -m paddle_serving_client.convert \
  --dirname ./rec_series_v1.0_infer/ \
  --model_filename inference.pdmodel  \
  --params_filename inference.pdiparams \
  --serving_server ./rec_series_v1.0_serving/ \
  --serving_client ./rec_series_v1.0_client/

车系识别 inference 模型转换完成后,会在当前文件夹多出 rec_series_v1.0_serving/ 和 rec_series_v1.0_client/ 的文件夹,具备如下结构:

    ├── rec_series_v1.0_serving/
    │   ├── inference.pdiparams
    │   ├── inference.pdmodel
    │   ├── serving_server_conf.prototxt
    │   └── serving_server_conf.stream.prototxt
    │
    └── rec_series_v1.0_client/
          ├── serving_client_conf.prototxt
          └── serving_client_conf.stream.prototxt

分别修改 rec_series_v1.0_serving/rec_series_v1.0_client/ 目录下的 serving_server_conf.prototxt 中的 alias 名字: 将 fetch_var 中的 alias_name 改为 features。 修改后的 serving_server_conf.prototxt 内容如下:

feed_var {
	name: "x"
	alias_name: "x"
	is_lod_tensor: false
	feed_type: 1
	shape: 3
	shape: 224
	shape: 224
}
fetch_var {
	name: "save_infer_model/scale_0.tmp_1"
	alias_name: "features"
	is_lod_tensor: false
	fetch_type: 1
	shape: 512
}

上述命令中参数具体含义如下表所示:

参数类型默认值描述
dirnamestr-需要转换的模型文件存储路径,Program结构文件和参数文件均保存在此目录。
model_filenamestrNone存储需要转换的模型Inference Program结构的文件名称。如果设置为None,则使用 __model__ 作为默认的文件名
params_filenamestrNone存储需要转换的模型所有参数的文件名称。当且仅当所有模型参数被保>存在一个单独的二进制文件中,它才需要被指定。如果模型参数是存储在各自分离的文件中,设置它的值为None
serving_serverstr"serving_server"转换后的模型文件和配置文件的存储路径。默认值为serving_server
serving_clientstr"serving_client"转换后的客户端配置文件存储路径。默认值为serving_client

索引库添加

将品牌和车系库放到上一级(deploy)目录

    # 回到deploy目录
    cd ../

目录结构如下:

    ├── brand_dataset_v1.0/
    │   └── index
    │       ├── id_map.pkl
    │       └── vector.index
    └── series_dataset_v1.0/
        └── index
            ├── id_map.pkl
            └── vector.index

服务部署

注意: 识别服务涉及到多个模型,出于性能考虑采用 PipeLine 部署方式。Pipeline 部署方式当前不支持 windows 平台。
进入到工作目录

  cd ./deploy/paddleserving/recognition

paddleserving 目录包含启动 Python Pipeline 服务、C++ Serving 服务和发送预测请求的代码,包括:

  __init__.py
  config.yml                  # 启动python pipeline服务的配置文件
  pipeline_http_client.py     # http方式发送pipeline预测请求的脚本
  pipeline_rpc_client.py      # rpc方式发送pipeline预测请求的脚本
  recognition_web_service.py  # 启动pipeline服务端的脚本
  readme.md                   # 识别模型服务化部署文档
  run_cpp_serving.sh          # 启动C++ Pipeline Serving部署的脚本
  test_cpp_serving_client.py  # rpc方式发送C++ Pipeline serving预测请求的脚本

修改config.yml文件如下:

#worker_num, 最大并发数。当build_dag_each_worker=True时, 框架会创建worker_num个进程,每个进程内构建grpcSever和DAG
##当build_dag_each_worker=False时,框架会设置主线程grpc线程池的max_workers=worker_num
worker_num: 1

#http端口, rpc_port和http_port不允许同时为空。当rpc_port可用且http_port为空时,不自动生成http_port
http_port: 8899
#rpc_port: 9994

dag:
    #op资源类型, True, 为线程模型;False,为进程模型
    is_thread_op: False
op:
    rec_brands:
        #并发数,is_thread_op=True时,为线程并发;否则为进程并发
        concurrency: 1

        #当op配置没有server_endpoints时,从local_service_conf读取本地服务配置
        local_service_conf:

            #uci模型路径
            model_config: ../../models/rec_brands_v1.0_serving

            #计算硬件类型: 空缺时由devices决定(CPU/GPU),0=cpu, 1=gpu, 2=tensorRT, 3=arm cpu, 4=kunlun xpu
            device_type: 1

            #计算硬件ID,当devices为""或不写时为CPU预测;当devices为"0", "0,1,2"时为GPU预测,表示使用的GPU卡
            devices: "0" # "0,1"

            #client类型,包括brpc, grpc和local_predictor.local_predictor不启动Serving服务,进程内预测
            client_type: local_predictor

            #Fetch结果列表,以client_config中fetch_var的alias_name为准
            fetch_list: ["features"]

    rec_series:
        #并发数,is_thread_op=True时,为线程并发;否则为进程并发
        concurrency: 1

        #当op配置没有server_endpoints时,从local_service_conf读取本地服务配置
        local_service_conf:

            #uci模型路径
            model_config: ../../models/rec_series_v1.0_serving

            #计算硬件类型: 空缺时由devices决定(CPU/GPU),0=cpu, 1=gpu, 2=tensorRT, 3=arm cpu, 4=kunlun xpu
            device_type: 1

            #计算硬件ID,当devices为""或不写时为CPU预测;当devices为"0", "0,1,2"时为GPU预测,表示使用的GPU卡
            devices: "0" # "0,1"

            #client类型,包括brpc, grpc和local_predictor.local_predictor不启动Serving服务,进程内预测
            client_type: local_predictor

            #Fetch结果列表,以client_config中fetch_var的alias_name为准
            fetch_list: ["features"]

    det:
        concurrency: 1
        local_service_conf:
            client_type: local_predictor
            device_type: 1
            devices: '0'
            fetch_list:
            - save_infer_model/scale_0.tmp_1
            model_config: ../../models/picodet_PPLCNet_x2_5_mainbody_lite_v1.0_serving/

修改recognition_web_service.py文件如下:

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import datetime

from paddle_serving_server.web_service import WebService, Op
from paddle_serving_server.pipeline import RequestOp, ResponseOp
from paddle_serving_server.pipeline import PipelineServer
from paddle_serving_server.pipeline.proto import pipeline_service_pb2
from paddle_serving_server.pipeline.channel import ChannelDataErrcode
import logging
import numpy as np
import sys
import cv2
from paddle_serving_app.reader import *
import base64
import os
import faiss
import pickle
import json


class TestRequestOp(RequestOp):
    def init_op(self):
        pass

    def unpack_request_package(self, request):
        # print(str(request.method))
        dict_data = {}
        log_id = None
        if request is None:
            raise ValueError("request is None")
        for idx, key in enumerate(request.key):
            dict_data[key] = request.value[idx]
        log_id = request.logid
        return dict_data, log_id, None, ""


class DetOp(Op):
    def init_op(self):
        self.img_preprocess = Sequential([
            BGR2RGB(), Div(255.0),
            Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], False),
            Resize((640, 640)), Transpose((2, 0, 1))
        ])

        self.img_postprocess = RCNNPostprocess("label_list.txt", "output")
        self.threshold = 0.2
        self.max_det_results = 5

    def generate_scale(self, im):
        """
        Args:
            im (np.ndarray): image (np.ndarray)
        Returns:
            im_scale_x: the resize ratio of X
            im_scale_y: the resize ratio of Y
        """
        target_size = [640, 640]
        origin_shape = im.shape[:2]
        resize_h, resize_w = target_size
        im_scale_y = resize_h / float(origin_shape[0])
        im_scale_x = resize_w / float(origin_shape[1])
        return im_scale_y, im_scale_x

    def preprocess(self, input_dicts, data_id, log_id):
        print("{} detect begin --> data_id: {}".format(datetime.datetime.now(), data_id))
        (_, input_dict), = input_dicts.items()
        imgs = []
        raw_imgs = []
        for key in input_dict.keys():
            data = base64.b64decode(input_dict[key].encode('utf8'))
            raw_imgs.append(data)
            data = np.fromstring(data, np.uint8)
            raw_im = cv2.imdecode(data, cv2.IMREAD_COLOR)

            im_scale_y, im_scale_x = self.generate_scale(raw_im)
            im = self.img_preprocess(raw_im)

            im_shape = np.array(im.shape[1:]).reshape(-1)
            scale_factor = np.array([im_scale_y, im_scale_x]).reshape(-1)
            imgs.append({
                "image": im[np.newaxis, :],
                "im_shape": im_shape[np.newaxis, :],
                "scale_factor": scale_factor[np.newaxis, :],
            })
        self.raw_img = raw_imgs

        feed_dict = {
            "image": np.concatenate(
                [x["image"] for x in imgs], axis=0),
            "im_shape": np.concatenate(
                [x["im_shape"] for x in imgs], axis=0),
            "scale_factor": np.concatenate(
                [x["scale_factor"] for x in imgs], axis=0)
        }
        return feed_dict, False, None, ""

    def postprocess(self, input_dicts, fetch_dict, data_id, log_id):
        boxes = self.img_postprocess(fetch_dict, visualize=False)
        boxes.sort(key=lambda x: x["score"], reverse=True)
        boxes = filter(lambda x: x["score"] >= self.threshold,
                       boxes[:self.max_det_results])
        boxes = list(boxes)
        for i in range(len(boxes)):
            boxes[i]["bbox"][2] += boxes[i]["bbox"][0] - 1
            boxes[i]["bbox"][3] += boxes[i]["bbox"][1] - 1
        result = json.dumps(boxes)
        res_dict = {"bbox_result": result, "image": self.raw_img}
        print("{} detect finish --> data_id: {}".format(datetime.datetime.now(), data_id))
        return res_dict, None, ""


class BrandsRecOp(Op):
    def init_op(self):
        self.seq = Sequential([
            BGR2RGB(), Resize((224, 224)), Div(255),
            Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225],
                      False), Transpose((2, 0, 1))
        ])

        index_dir = "../../brand_dataset_v1.0/index"
        assert os.path.exists(os.path.join(
            index_dir, "vector.index")), "vector.index not found ..."
        assert os.path.exists(os.path.join(
            index_dir, "id_map.pkl")), "id_map.pkl not found ... "

        self.searcher = faiss.read_index(
            os.path.join(index_dir, "vector.index"))

        with open(os.path.join(index_dir, "id_map.pkl"), "rb") as fd:
            self.id_map = pickle.load(fd)

        self.rec_nms_thresold = 0.05
        self.rec_score_thres = 0.5
        self.feature_normalize = True
        self.return_k = 1
        self.area_ratio_thresold=0.1

    def preprocess(self, input_dicts, data_id, log_id):
        (_, input_dict), = input_dicts.items()
        raw_img = input_dict["image"][0]
        data = np.frombuffer(raw_img, np.uint8)
        origin_img = cv2.imdecode(data, cv2.IMREAD_COLOR)
        dt_boxes = input_dict["bbox_result"]
        boxes = json.loads(dt_boxes)
        boxes.append({
            "category_id": 0,
            "score": 1.0,
            "bbox": [0, 0, origin_img.shape[1], origin_img.shape[0]]
        })
        self.det_boxes = boxes

        #construct batch images for rec
        imgs = []
        for box in boxes:
            box = [int(x) for x in box["bbox"]]
            im = origin_img[box[1]:box[3], box[0]:box[2]].copy()
            img = self.seq(im)
            imgs.append(img[np.newaxis, :].copy())

        input_imgs = np.concatenate(imgs, axis=0)
        return {"x": input_imgs}, False, None, ""

    def nms_to_rec_results(self, results, thresh=0.1):
        filtered_results = []
        x1 = np.array([r["bbox"][0] for r in results]).astype("float32")
        y1 = np.array([r["bbox"][1] for r in results]).astype("float32")
        x2 = np.array([r["bbox"][2] for r in results]).astype("float32")
        y2 = np.array([r["bbox"][3] for r in results]).astype("float32")
        scores = np.array([r["rec_scores"] for r in results])

        areas = (x2 - x1 + 1) * (y2 - y1 + 1)
        order = scores.argsort()[::-1]
        while order.size > 0:
            i = order[0]
            xx1 = np.maximum(x1[i], x1[order[1:]])
            yy1 = np.maximum(y1[i], y1[order[1:]])
            xx2 = np.minimum(x2[i], x2[order[1:]])
            yy2 = np.minimum(y2[i], y2[order[1:]])

            w = np.maximum(0.0, xx2 - xx1 + 1)
            h = np.maximum(0.0, yy2 - yy1 + 1)
            inter = w * h
            ovr = inter / (areas[i] + areas[order[1:]] - inter)
            inds = np.where(ovr <= thresh)[0]
            order = order[inds + 1]
            filtered_results.append(results[i])
        return filtered_results

    def check_boxes(self, results, area_ratio_thresh=0.1):
        filtered_results = []
        for result in results:
            if result["area_ratio"]>=area_ratio_thresh:
                filtered_results.append(result)
        if len(filtered_results)>0:
            return filtered_results
        else:
            return results

    def postprocess(self, input_dicts, fetch_dict, data_id, log_id):
        batch_features = fetch_dict["features"]

        if self.feature_normalize:
            feas_norm = np.sqrt(
                np.sum(np.square(batch_features), axis=1, keepdims=True))
            batch_features = np.divide(batch_features, feas_norm)

        scores, docs = self.searcher.search(batch_features, self.return_k)
        origin_img_box = self.det_boxes[len(self.det_boxes) - 1]["bbox"]
        total_pixes = origin_img_box[2] * origin_img_box[3]
        results = []
        for i in range(scores.shape[0]):
            pred = {}
            xmin, ymin, xmax, ymax = self.det_boxes[i]["bbox"]
            area_pix = (xmax - xmin) * (ymax - ymin)
            ratio = 0.0
            if total_pixes > 0:
                ratio = area_pix * 1.0 / total_pixes
            if scores[i][0] >= self.rec_score_thres:
                pred["bbox"] = [int(x) for x in self.det_boxes[i]["bbox"]]
                pred["rec_docs"] = self.id_map[docs[i][0]].split()[1]
                pred["rec_scores"] = scores[i][0]
                pred["area_ratio"] = round(ratio, 4)
                results.append(pred)

        #do nms
        results = self.nms_to_rec_results(results, self.rec_nms_thresold)
        print("{} BrandsRecOp data_id: {} --> Nms Result: {}".format(datetime.datetime.now(), data_id, results))
        results = self.check_boxes(results, self.area_ratio_thresold)
        print("{} BrandsRecOp data_id: {} --> Out Result: {}".format(datetime.datetime.now(), data_id, results))
        return {"result": str(results)}, None, ""


class SeriesRecOp(Op):
    def init_op(self):
        self.seq = Sequential([
            BGR2RGB(), Resize((224, 224)), Div(255),
            Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225],
                      False), Transpose((2, 0, 1))
        ])

        index_dir = "../../series_dataset_v1.0/index"
        assert os.path.exists(os.path.join(
            index_dir, "vector.index")), "vector.index not found ..."
        assert os.path.exists(os.path.join(
            index_dir, "id_map.pkl")), "id_map.pkl not found ... "

        self.searcher = faiss.read_index(
            os.path.join(index_dir, "vector.index"))

        with open(os.path.join(index_dir, "id_map.pkl"), "rb") as fd:
            self.id_map = pickle.load(fd)

        self.rec_nms_thresold = 0.05
        self.rec_score_thres = 0.5
        self.feature_normalize = True
        self.return_k = 1
        self.area_ratio_thresold=0.1

    def preprocess(self, input_dicts, data_id, log_id):
        (_, input_dict), = input_dicts.items()
        raw_img = input_dict["image"][0]
        data = np.frombuffer(raw_img, np.uint8)
        origin_img = cv2.imdecode(data, cv2.IMREAD_COLOR)
        dt_boxes = input_dict["bbox_result"]
        boxes = json.loads(dt_boxes)
        boxes.append({
            "category_id": 0,
            "score": 1.0,
            "bbox": [0, 0, origin_img.shape[1], origin_img.shape[0]]
        })
        self.det_boxes = boxes

        #construct batch images for rec
        imgs = []
        for box in boxes:
            box = [int(x) for x in box["bbox"]]
            im = origin_img[box[1]:box[3], box[0]:box[2]].copy()
            img = self.seq(im)
            imgs.append(img[np.newaxis, :].copy())

        input_imgs = np.concatenate(imgs, axis=0)
        return {"x": input_imgs}, False, None, ""

    def nms_to_rec_results(self, results, thresh=0.1):
        filtered_results = []
        x1 = np.array([r["bbox"][0] for r in results]).astype("float32")
        y1 = np.array([r["bbox"][1] for r in results]).astype("float32")
        x2 = np.array([r["bbox"][2] for r in results]).astype("float32")
        y2 = np.array([r["bbox"][3] for r in results]).astype("float32")
        scores = np.array([r["rec_scores"] for r in results])

        areas = (x2 - x1 + 1) * (y2 - y1 + 1)
        order = scores.argsort()[::-1]
        while order.size > 0:
            i = order[0]
            xx1 = np.maximum(x1[i], x1[order[1:]])
            yy1 = np.maximum(y1[i], y1[order[1:]])
            xx2 = np.minimum(x2[i], x2[order[1:]])
            yy2 = np.minimum(y2[i], y2[order[1:]])

            w = np.maximum(0.0, xx2 - xx1 + 1)
            h = np.maximum(0.0, yy2 - yy1 + 1)
            inter = w * h
            ovr = inter / (areas[i] + areas[order[1:]] - inter)
            inds = np.where(ovr <= thresh)[0]
            order = order[inds + 1]
            filtered_results.append(results[i])
        return filtered_results

    def check_boxes(self, results, area_ratio_thresh=0.1):
        filtered_results = []
        for result in results:
            if result["area_ratio"]>=area_ratio_thresh:
                filtered_results.append(result)
        if len(filtered_results)>0:
            return filtered_results
        else:
            return results

    def postprocess(self, input_dicts, fetch_dict, data_id, log_id):
        batch_features = fetch_dict["features"]

        if self.feature_normalize:
            feas_norm = np.sqrt(
                np.sum(np.square(batch_features), axis=1, keepdims=True))
            batch_features = np.divide(batch_features, feas_norm)

        scores, docs = self.searcher.search(batch_features, self.return_k)
        origin_img_box = self.det_boxes[len(self.det_boxes) - 1]["bbox"]
        total_pixes = origin_img_box[2] * origin_img_box[3]
        results = []
        for i in range(scores.shape[0]):
            pred = {}
            xmin, ymin, xmax, ymax = self.det_boxes[i]["bbox"]
            area_pix = (xmax - xmin) * (ymax - ymin)
            ratio = 0.0
            if total_pixes > 0:
                ratio = area_pix * 1.0 / total_pixes
            if scores[i][0] >= self.rec_score_thres:
                pred["bbox"] = [int(x) for x in self.det_boxes[i]["bbox"]]
                pred["rec_docs"] = self.id_map[docs[i][0]].split()[1]
                pred["rec_scores"] = scores[i][0]
                pred["area_ratio"] = round(ratio, 4)
                results.append(pred)

        #do nms
        results = self.nms_to_rec_results(results, self.rec_nms_thresold)
        print("{} SeriesRecOp data_id: {} --> Nms Result: {}".format(datetime.datetime.now(), data_id, results))
        results = self.check_boxes(results, self.area_ratio_thresold)
        print("{} SeriesRecOp data_id: {} --> Out Result: {}".format(datetime.datetime.now(), data_id, results))
        return {"result": str(results)}, None, ""


class CombineOp(Op):
    def preprocess(self, input_data, data_id, log_id):
        return None, False, None, ""

    def postprocess(self, input_dicts, fetch_dict, data_id, log_id):
        print("{} CombineOp data_id: {} --> input_dicts: {}".format(datetime.datetime.now(), data_id, input_dicts))
        results = {}
        for op_name, data in input_dicts.items():
            if "brands" in op_name:
                ret = data["result"]
                if ret is not None:
                    results["brands"] = json.loads(ret.replace("'", "\""))
                else:
                    results["brands"] = "[]"
            elif "series" in op_name:
                ret = data["result"]
                if ret is not None:
                    results["series"] = json.loads(ret.replace("'", "\""))
                else:
                    results["series"] = "[]"
        print("{} CombineOp data_id: {} --> Out Result: {}".format(datetime.datetime.now(), data_id, results))
        return {"result": str(results)}, None, ""


class RecognitionService(WebService):
    def get_pipeline_response(self, read_op):
        read_op2 = TestRequestOp()
        det_op = DetOp(name="det", input_ops=[read_op2])
        rec_brands_op = BrandsRecOp(name="rec_brands", input_ops=[det_op])
        rec_series_op = SeriesRecOp(name="rec_series", input_ops=[det_op])
        combine_op = CombineOp("combine", input_ops=[rec_brands_op, rec_series_op])
        return combine_op


product_recog_service = RecognitionService(name="recognition")
product_recog_service.prepare_pipeline_config("config.yml")
product_recog_service.run_service()

启动服务:

# 启动服务,运行日志保存在 log.txt
nohup python3.8 recognition_web_service.py &>log.txt &

如果出现faiss没找到,请参考这里:https://blog.csdn.net/weixin_43882112/article/details/107614217

查看进程

ps -ef|grep python

关闭进程

kill -9 19913

查看日志

tail -f 1000 log.log

如何查看端口占用

$: netstat -anp | grep 8888
tcp        0      0 127.0.0.1:8888          0.0.0.0:*               LISTEN      13404/python3       
tcp        0      1 172.17.0.10:34036       115.42.35.84:8888       SYN_SENT    14586/python3 

强制杀掉进程:通过pid

$: kill -9 13404
$: kill -9 14586
$: netstat -anp | grep 8888
$:

服务测试

修改pipeline_http_client.py文件如下:

import requests
import json
import base64
import os

imgpath = "图片路径.jpg"

def cv2_to_base64(image):
    return base64.b64encode(image).decode('utf8')

if __name__ == "__main__":
    url = "http://127.0.0.1:8899/recognition/prediction"

    with open(os.path.join(".",  imgpath), 'rb') as file:
        image_data1 = file.read()
    image = cv2_to_base64(image_data1)
    data = {"key": ["image"], "value": [image]}

    for i in range(1):
        r = requests.post(url=url, data=json.dumps(data))
        print(r.json())

发送请求:

python3.8 pipeline_http_client.py

成功运行后,模型预测的结果会打印在客户端中,如下所示:

{'err_no': 0, 'err_msg': '', 'key': ['result'], 'value': ["{'brands': [{'bbox': [16, 19, 492, 565], 'rec_docs': '1', 'rec_scores': 0.98805684, 'area_ratio': 0.7432}], 'series': [{'bbox': [16, 19, 492, 565], 'rec_docs': '6', 'rec_scores': 0.9267364, 'area_ratio': 0.7432}]}"], 'tensors': []}
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值