题目描述
小李来到了一条石板路前,每块石板上从 1
挨着编号为:1、2、3.......
这条石板路要根据特殊的规则才能前进:对于小李当前所在的编号为 K
的 石板,小李单次只能往前跳K的一个约数(不含 1
和 K
)步,即跳到 K+X
( X
为 K
的一个非 1
和本身的约数)的位置。 小李当前处在编号为 N
的石板,他想跳到编号恰好为 M
的石板去,小李想知道最少需要跳跃几次可以到达。 例如: N=4,M=24
: 4−>6−>8−>12−>18−>24
于是小李最少需要跳跃 5
次,就可以从 4
号石板跳到 24
号石板;
输入输出格式
输入格式 输入为一行,有两个整数 N,M
,以空格隔开。 输出格式 输出小易最少需要跳跃的步数,如果不能到达输出 −1
。
输入输出样例1
输入 4 24
输出 5
输入输出样例2
输入 10 29
输出 −1
说明提示
- 4 ≤ N ≤ 100000
- N ≤ M ≤ 100000
#include <iostream> #include <vector> #include <math.h> #include <limits.h> using namespace std; void getdiv(int n,vector<int>& div) { for(int i=2;i<=sqrt(n);i++) { if(n%i==0) { div.push_back(i); if((n/i)!=i)//非平方数注意不要忽略 div.push_back(n/i); } } } int Jump(int N,int M) { vector<int> step(M+1,INT_MAX);//放置越界,初始化M+1大小 step[N]=1;//自己跳到自己算1步,其实这里为0也可以,最后反悔的时候不用减1即可 for(int i=N;i<M;i++) { if(step[i]==INT_MAX)//这个点不可达,continue continue; vector<int> div;//用于获取i的约数 getdiv(i,div); for(int j=0;j<div.size();j++)//动态规划核心代码 { if((div[j]+i)<=M && step[i+div[j]]!=INT_MAX) //i+div[j]这个石板不等于INT_MAX,表示肯定已经走过了而且保存的是最小值 { step[i+div[j]]=min(step[i+div[j]],step[i]+1); } else if((div[j]+i)<=M)//不可达 step[i+div[j]]=step[i]+1; } } if(step[M]==INT_MAX) { return -1; } else return step[M]-1;//起始位置是1开始的 } int main() { int N,M;//起始石板编号和终止石板编号 cin>>N>>M; cout<<Jump(N,M)<<endl; }