头歌—跳石板

题目描述

小李来到了一条石板路前,每块石板上从 1 挨着编号为:1、2、3....... 这条石板路要根据特殊的规则才能前进:对于小李当前所在的编号为 K 的 石板,小李单次只能往前跳K的一个约数(不含 1K )步,即跳到 K+X ( XK 的一个非 1 和本身的约数)的位置。 小李当前处在编号为 N 的石板,他想跳到编号恰好为 M 的石板去,小李想知道最少需要跳跃几次可以到达。 例如: N=4,M=244−>6−>8−>12−>18−>24 于是小李最少需要跳跃 5 次,就可以从 4 号石板跳到 24 号石板;

输入输出格式

输入格式 输入为一行,有两个整数 N,M,以空格隔开。 输出格式 输出小易最少需要跳跃的步数,如果不能到达输出 −1

输入输出样例1

输入 4 24 输出 5

输入输出样例2

输入 10 29 输出 −1

说明提示
  • 4 ≤ N ≤ 100000
  • N ≤ M ≤ 100000
    #include <iostream>
    #include <vector>
    #include <math.h>
    #include <limits.h>
    using namespace std;
    
    void getdiv(int n,vector<int>& div)
    {
        for(int i=2;i<=sqrt(n);i++)
        {
           if(n%i==0)
           {
               div.push_back(i);
               if((n/i)!=i)//非平方数注意不要忽略
                   div.push_back(n/i);
           }
        }
    }
    
    int Jump(int N,int M)
    {
        vector<int> step(M+1,INT_MAX);//放置越界,初始化M+1大小
        step[N]=1;//自己跳到自己算1步,其实这里为0也可以,最后反悔的时候不用减1即可
        
        for(int i=N;i<M;i++)
        {
            if(step[i]==INT_MAX)//这个点不可达,continue
                continue;
            
            vector<int> div;//用于获取i的约数
            getdiv(i,div);
            for(int j=0;j<div.size();j++)//动态规划核心代码
            {
                if((div[j]+i)<=M && step[i+div[j]]!=INT_MAX)
                //i+div[j]这个石板不等于INT_MAX,表示肯定已经走过了而且保存的是最小值
                {
                    step[i+div[j]]=min(step[i+div[j]],step[i]+1);
                    
                }
                else if((div[j]+i)<=M)//不可达
                    step[i+div[j]]=step[i]+1;
                
            }
        }
        if(step[M]==INT_MAX)
        {
            return -1;
        }
        else
            return step[M]-1;//起始位置是1开始的
    }
    
    int main()
    {
        int N,M;//起始石板编号和终止石板编号
        cin>>N>>M;
        cout<<Jump(N,M)<<endl;
        
        
    }
    

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值