R中的极大似然估计

R learning 专栏收录该内容
17 篇文章 1 订阅
摘要: 1. 数据与模型 我们要使用的数据来自于“MASS”包中的geyser数据。先把数据调出来,看看它长什么样子。 geyser waiting duration 1 80 4.0166667 2 71 2.1500000 3 57 4.0000000 4 80 4.0000000 5 75 4.0000000 … ...

1. 数据与模型
我们要使用的数据来自于“MASS”包中的geyser数据。先把数据调出来,看看它长什么样子。
> geyser
    waiting  duration
1        80 4.0166667
2        71 2.1500000
3        57 4.0000000
4        80 4.0000000
5        75 4.0000000
……
该数据采集自美国黄石公园内的一个名叫Old Faithful 的喷泉。“waiting”就是喷泉两次喷发的间隔时间,“duration”当然就是指每次喷发的持续时间。在这里,我们只用到“waiting”数据,为了简单一点,可以使用attach()函数。
> attach(geyser)
2. 模型
绘制出数据的频率分布直方图:
> hist(waiting)

从图中可以看出,其分布是两个正态分布的混合。可以用如下的分布函数来描述该数据

该函数中有5个参数需要确定。上述分布函数的对数极大似然函数为:

3. 估计
3.1. 在R中定义对数似然函数:
> #定义log-likelihood函数
> LL<-function(params,data)
+ {#参数"params"是一个向量,依次包含了五个参数:p,mu1,sigma1,
+ #mu2,sigma2.
+ #参数"data",是观测数据。
+ t1<-dnorm(data,params[2],params[3])
+ t2<-dnorm(data,params[4],params[5])
+ #这里的dnorm()函数是用来生成正态密度函数的。
+ f<-params[1]*t1+(1-params[1])*t2
+ #混合密度函数
+ ll<-sum(log(f))
+ #log-likelihood函数
+ return(-ll)
+ #nlminb()函数是最小化一个函数的值,但我们是要最大化log-
+ #likeilhood函数,所以需要在“ll”前加个“-”号。
+ }
3.2. 参数估计
> #用hist函数找出初始值
> hist(waiting,freq=F)
> lines(density(waiting))
> #拟合函数####optim####
> geyser.res<-nlminb(c(0.5,50,10,80,10),LL,data=waiting,
+ lower=c(0.0001,-Inf,0.0001,-Inf,-Inf,0.0001),
+ upper=c(0.9999,Inf,Inf,Inf,Inf))
> #初始值为p=0.5,mu1=50,sigma1=10,mu2=80,sigma2=10
> #LL是被最小化的函数。
> #data是拟合用的数据
> #lower和upper分别指定参数的上界和下界。
3.3. 估计结果
> #查看拟合的参数
> geyser.res$par
[1] 0.3075937 54.2026518 4.9520026 80.3603085 7.5076330
> #拟合的效果
> X<-seq(40,120,length=100)
> #读出估计的参数
> p<-geyser.res$par[1]
> mu1<-geyser.res$par[2]
> sig1<-geyser.res$par[3]
> mu2<-geyser.res$par[4]
> sig2<-geyser.res$par[5]
> #将估计的参数函数代入原密度函数。
> f<-p*dnorm(X,mu1,sig1)+(1-p)*dnorm(X,mu2,sig2)
> #作出数据的直方图
> hist(waiting,probability=T,col=0,ylab="Density",
+ ylim=c(0,0.04),xlab="Eruption waiting times")
> #画出拟合的曲线
> lines(X,f)

> detach()
小结
从上面的例子可以看出,在R中作极大似然估计,主要就是定义似然后函数,然后再用nlminb函数对参数进行估计。

对于r语言也可以直接使用RLRsim包做计算

评论 2 您还未登录,请先 登录 后发表或查看评论
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值