Unstructured - 提取非结构化数据

在这里插入图片描述


一、关于 Unstructured


unstructured库提供了用于 提取和预处理 图像和文本文档(例如 PDF、HTML、Word 文档等)的开源组件
unstructured模块化功能 和 连接器形成一个内聚系统,简化了数据提取和预处理,使其能够适应不同的平台,并有效地将非结构化数据转换为结构化输出。


核心概念

unstructured库包含用于 NLP 任务的分区、分块、清理和暂存原始文档的核心功能。
您可以从核心功能文档中查看可用函数的完整列表 以及如何使用它们。


一般来说,这些功能分为几类:

  • 分区 Partitioning 将原始文档分解为标准的结构化元素。
  • 清理 Cleaning 从文档中删除不需要的文本,例如样板文件和句子片段。
  • 暂存 Staging 函数格式化下游任务的数据,例如 ML 推理和数据标记。
  • 分块 Chunking 功能将文档分割成更小的部分,以便在 RAG 应用程序和相似性搜索中使用。
  • 嵌入Embedding 编码器类提供了一个接口,可以轻松地将预处理的文本转换为向量。

Connectors 🔗是unstructured预处理管道 和 各种数据存储平台 之间的重要链接。
它们允许跨各种来源(包括云服务、存储库和本地目录)对文档进行批处理。
每个连接器都是针对特定平台(例如 Azure、Google Drive 或 Github)量身定制的,并附带独特的命令和依赖项。

要查看库中可用的连接器列表unstructured,请查看连接器 GitHub 文件夹文档


🚀 Beta 功能:Chipper 模型

我们正在发布 Chipper 模型的测试版,以在处理高分辨率、复杂文档时提供卓越的性能。
要开始在 API 请求中使用 Chipper 模型,您可以使用 hi_res_model_name=chipper 参数。
文档:https://unstructured-io.github.io/unstructured/api.html#beta-version-hi-res-strategy-with-chipper-model


二、安装

方式一:使用 PYPI

支持所有文档

pip install "unstructured[all-docs]" 

支持不需要额外以来的文档类型,如 plain text files, HTML, XML, JSON and Emails

pip install unstructured

需要支持额外文档

pip install "unstructured[docx,pptx]"

方式二:使用源码本地安装

此处默认你已经安装python 并有 env

git clone https://github.com/Unstructured-IO/unstructured.git

make install

如果要安装用于 本地处理图像 和 PDF 的模型 和 依赖项

make install-local-inference

安装依赖库

以下系统依赖项根据需要安装

  • libmagic-dev(文件类型检测)
  • poppler-utils(图像和 PDF)
  • tesseract-ocr(图像和 PDF,安装tesseract-lang以获得其他语言支持)
  • libreoffice(微软 Office 文档)
  • pandoc(EPUB、RTF 和 Open Office 文档)。请注意,要处理 RTF 文件,您需要版本2.14.2或更新版本。运行make install-pandoc./scripts/install-pandoc.sh将为您安装正确的版本。
  • 有关如何在 Windows 上安装的建议以及了解其他功能的依赖关系,请参阅此处的安装文档。

测试

此时,您应该能够运行以下代码:

from unstructured.partition.auto import partition

elements = partition(filename="example-docs/eml/fake-email.eml")
print("\n\n".join([str(el) for el in elements]))

三、在Docker运行库

以下说明旨在帮助您启动并运行使用 Docker 来与unstructured
如果您的计算机上尚未安装 docker,请参阅 https://blog.csdn.net/lovechris00/article/details/122121369

注意:我们构建多平台映像来支持 x86_64 和 Apple 芯片硬件。
docker pull应下载适合您的架构的相应映像,但如果需要,您可以使用--platform(eg --platform linux/amd64) 指定。

我们为所有推送构建 Docker 镜像main
我们用相应的 short commit hash(例如fbc7a69)和应用程序版本(例如0.5.5-dev1)来标记每个镜像。
我们还用 标记最新的镜像latest
要利用这一点,docker pull请从我们的镜像存储库中获取。

docker pull downloads.unstructured.io/unstructured-io/unstructured:latest

添加shell

拉取后,您可以从此映像创建一个容器并为其添加 shell。

# create the container
docker run -dt --name unstructured downloads.unstructured.io/unstructured-io/unstructured:latest

# this will drop you into a bash shell where the Docker image is running
docker exec -it unstructured bash

构建自己的 Docker image

您还可以构建自己的 Docker 镜像。

如果您只计划解析一种类型的数据,您可以通过注释掉其他数据类型所需的一些包/要求来加快构建映像的速度。
请参阅 Dockerfile 以了解您的用例需要哪些行。

make docker-build

# this will drop you into a bash shell where the Docker image is running
make docker-start-bash

交互运行

一旦进入正在运行的容器,您就可以直接在 Python 解释器的交互模式下进行尝试。

# this will drop you into a python console so you can run the below partition functions
python3

>>> from unstructured.partition.pdf import partition_pdf
>>> elements = partition_pdf(filename="example-docs/layout-parser-paper-fast.pdf")

>>> from unstructured.partition.text import partition_text
>>> elements = partition_text(filename="example-docs/fake-text.txt")

四、PDF文档解析示例

以下示例展示了如何开始使用该unstructured库。
一行代码即可解析十多种文档类型!
你可以使用此Colab 笔记本运行下面的示例。

解析非结构化文档的最简单方法是,使用 partition函数。
如果您使用partition函数,unstructured将检测文件类型并将其路由到适当的文件特定分区函数。
如果您正在使用partition功能,您可能需要通过安装附加参数

pip install unstructured[local-inference]

确保您首次使用此处libmagic列出的说明进行安装时将始终应用默认参数。
如果您需要高级功能,请使用特定于文档的分区功能。

from unstructured.partition.auto import partition

elements = partition("example-docs/layout-parser-paper.pdf")

运行print("\n\n".join([str(el) for el in elements]))以获取输出的字符串表示形式,如下所示:

LayoutParser : A Unified Toolkit for Deep Learning Based Document Image Analysis

Zejiang 
...  image classification [11,

2024-04-10(三)

### 结构化数据非结构化数据的区别 结构化数据具有固定的格式和长度,通常存储在关系型数据库中,通过表格形式表示,每一列代表特定属性,每行记录具体实体的信息。这种数据易于查询、分析并适用于传统的关系型数据库管理系统[^1]。 相比之下,非结构化数据缺乏固定模式或格式,无法直接放入传统的二维表结构内。这类数据涵盖了多种多样的文件类型,比如电子邮件、社交媒体帖子、客户评论以及多媒体资料等。由于其复杂性和多样性,处理起来更加困难,往往需要专门的技术手段来进行解析和理解[^2]。 #### 应用场景对比 对于结构化数据而言,在金融交易记录、销售订单明细等领域广泛应用。例如银行系统的转账操作日志就是典型的结构化数据实例;而医疗保健行业中的患者病历档案则属于半结构化的范畴,因为它们虽然有一定的字段定义但是也可能含有自由文本描述部分。 而非结构化数据的应用范围同样广泛,特别是在自然语言处理(NLP)方面有着不可替代的作用。如在线客服聊天机器人能够利用大量的对话历史作为训练素材来提升服务质量;另外还有图像识别技术可以应用于安防监控领域,通过对海量视频片段的内容提取特征点进而实现智能化预警功能[^4]。 ```python import pandas as pd # 示例:读取CSV文件(结构化数据) df_structured = pd.read_csv('transactions.csv') print(df_structured.head()) # 处理JSON文件(可能为半结构化) with open('patient_records.json') as f: patient_data = json.load(f) # 使用NLP库处理文本数据非结构化) from nltk.tokenize import word_tokenize text_unstructured = "This is an example of unstructured text data." tokens = word_tokenize(text_unstructured) print(tokens) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值