使用 LiteLLM 或 Qwen 等 LLM API 替代 OpenAI(Swarm 中应用)


使用 LiteLLM 替代 OpenAI

from swarm import Swarm, Agent 

from openai import OpenAI


chat_model_id = 'zhipu--GLM-4-Flash' 

llm = OpenAI( 
    base_url = 'http://localhost:4000/', 
    api_key='sk-1234',
)

client = Swarm(client=llm) 

def transfer_to_agent_b():
    return agent_b

agent_a = Agent(
    name="Agent A",
    instructions="You are a helpful agent.",
    functions=[transfer_to_agent_b],
    model = chat_model_id,
)  

agent_b = Agent(
    name="Agent B",
    instructions="Only speak in Haikus.",
    model = chat_model_id,
)

response = client.run(
    agent=agent_a,
    messages=[{"role": "user", "content": "I want to talk to agent B."}],
)

print(response.messages[-1]["content"])

使用 Qwen

智谱 估计和 Qwen 类似


DASHSCOPE_API_KEY = 'sk-40d1c...184f11d4'

llm = OpenAI( 
	api_key = DASHSCOPE_API_KEY, 
	base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",  # 填写 DashScope服务的base_url
)
chat_model_id = "qwen-plus"

client = Swarm(client=llm) 

def transfer_to_agent_b():
    return agent_b

agent_a = Agent(
    name="Agent A",
    instructions="You are a helpful agent.",
    functions=[transfer_to_agent_b],
    model = chat_model_id,
)  

agent_b = Agent(
    name="Agent B",
    instructions="Only speak in Haikus.",
    model = chat_model_id,
)

response = client.run(
    agent=agent_a,
    messages=[{"role": "user", "content": "I want to talk to agent B."}],
)

print(response.messages[-1]["content"])




2024-10-28(一)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

编程乐园

请我喝杯伯爵奶茶~!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值