cached-property - 类属性缓存装饰器

本文翻译整理自:https://github.com/pydanny/cached-property


一、关于 cached-property

cached-property 是一个用于缓存类属性的装饰器工具。


相关链接资源


关键功能特性

  • 快速简便地缓存耗时或计算密集型的类属性
  • 支持 Python 2 和 3(Python 3.8+ 已内置类似功能)
  • 提供线程安全版本 threaded_cached_property
  • 支持异步属性缓存
  • 可设置缓存超时时间(TTL)

二、安装

pip install cached-property

三、使用指南


1、基础用法

定义包含昂贵计算属性的类:

class Monopoly:

    def __init__(self):
        self.boardwalk_price = 500

    @property
    def boardwalk(self):
        # 模拟耗时操作(如数据库查询或API调用)
        self.boardwalk_price += 50
        return self.boardwalk_price

测试效果(每次访问属性值都会变化):

>>> monopoly = Monopoly()
>>> monopoly.boardwalk
550
>>> monopoly.boardwalk
600

转换为缓存属性:

from cached_property import cached_property

class Monopoly(object):

    def __init__(self):
        self.boardwalk_price = 500

    @cached_property
    def boardwalk(self):
        self.boardwalk_price += 50
        return self.boardwalk_price

测试效果(值被缓存):

>>> monopoly = Monopoly()
>>> monopoly.boardwalk
550
>>> monopoly.boardwalk  # 缓存生效
550


2、手动清除缓存

通过删除实例字典中的属性来清除缓存:

>>> del monopoly.__dict__['boardwalk']
>>> monopoly.boardwalk  # 重新计算
600


3、线程安全版本

多线程环境下使用 threaded_cached_property

from cached_property import threaded_cached_property

class Monopoly:

    def __init__(self):
        self.boardwalk_price = 500

    @threaded_cached_property
    def boardwalk(self):
        sleep(1)
        self.boardwalk_price += 50
        return self.boardwalk_price

多线程测试:

>>> from threading import Thread
>>> threads = []
>>> for x in range(10):
>>>     thread = Thread(target=lambda: monopoly.boardwalk)
>>>     thread.start()
>>>     threads.append(thread)
>>> [t.join() for t in threads]
>>> assert monopoly.boardwalk == 550  # 确保线程安全


4、异步支持

缓存异步属性:

from cached_property import cached_property

class Monopoly:

    def __init__(self):
        self.boardwalk_price = 500

    @cached_property
    async def boardwalk(self):
        self.boardwalk_price += 50
        return self.boardwalk_price

异步调用示例:

>>> async def print_boardwalk():
...     monopoly = Monopoly()
...     print(await monopoly.boardwalk)
...     print(await monopoly.boardwalk)  # 使用缓存值
>>> asyncio.get_event_loop().run_until_complete(print_boardwalk())
550
550

注:异步版本不适用于多线程环境。


5、缓存超时(TTL)

设置缓存自动失效时间:

from cached_property import cached_property_with_ttl

class Monopoly(object):

    @cached_property_with_ttl(ttl=5)  # 5秒后缓存失效
    def dice(self):
        return random.randint(2,12)

测试效果:

>>> monopoly = Monopoly()
>>> monopoly.dice
10
>>> monopoly.dice  # 5秒内使用缓存
10
>>> sleep(6)      # 等待缓存过期
>>> monopoly.dice  # 重新计算
3


注:TTL 功能可能存在缓存清除不彻底的问题。


四、致谢

  • 感谢 Pip、Django、Werkzeug 等项目的类似实现
  • Reinout Van Rees 推荐原始装饰器方案
  • @tinche 提供线程安全解决方案
  • @bcho 贡献 TTL 功能

伊织 xAI 2025-04-27(日)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

编程乐园

请我喝杯伯爵奶茶~!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值