MCP - Cline 接入 高德地图 Server


一、准备

1、注册、认证高德开放平台账号

https://lbs.amap.com/


需要进行账号认证

https://console.amap.com/dev/user/permission

在这里插入图片描述


个人版的,使用 邮箱 + 支付宝刷脸即可,不需要等待多久
(古早一些平台 开发者需要 手持身份证认证,然后等一两天的情况过去了)
在这里插入图片描述


2、创建应用、获取 Key

https://console.amap.com/dev/key/app

在这里插入图片描述


创建成功后,自动进入应用详情界面,点击 添加 Key
在这里插入图片描述


服务平台 勾选 Web服务

在这里插入图片描述


返回列表,即可看到 Key,复制出来备用

在这里插入图片描述


3、用量管理

个人开发者,允许少量的调用,可在 用量管理 中查看额度

https://console.amap.com/dev/flow/manage


在这里插入图片描述


2、Cline 配置模型

这里我使用 OpenRouter 平台的模型来作为测试,可见教程:

https://ezcode.blog.csdn.net/article/details/147015149


二、接入

更新可见:https://lbs.amap.com/api/mcp-server/gettingstarted
还有 Cursor、Spring AI SSE、Node.js I/O 模式接入


这里我们使用 Cline,填入下面 mcp 配置:

{
  "mcpServers": {
    "amap-amap-sse": {
      "url": "https://mcp.amap.com/sse?key=您在高德官网上申请的key"
    }
  }
}

macOS 中,这个文件位于:~/Library/Application Support/Code/User/globalStorage/saoudrizwan.claude-dev/settings/cline_mcp_settings.json


Ctrol + S 保存后,Cline 帮你自动连接配置。
配置成功后,左侧 Stack 会出现 这个 server 的名字,展开可以看到它下面的 tool。
在这里插入图片描述


三、测试

这里我输入:

导航 从 深圳西丽到石厦

在这里插入图片描述


接着大模型又执行了一系列任务,在 Cline 中点击 Approve 来许可后,输出下面结果:

在这里插入图片描述


官方测试 - 出行规划专属地图

详情可见:https://lbs.amap.com/api/mcp-server/application-case/travel-planning-case

输入:

##我五一计划去昆明游玩4天的旅行攻略。
#帮制作旅行攻略,考虑出行时间和路线,以及天气状况路线规划。
#制作网页地图自定义绘制旅游路线和位置。
##网页使用简约美观页面风格,景区图片以卡片展示。
#行程规划结果在高德地图app展示,并集成到h5页面中。
##同一天行程景区之间我想打车前往。
#生成文件名 kmTravel.html。

四、关于 高德 MCP Server - AI时代的出行服务中台

详见:https://lbs.amap.com/api/mcp-server/summary

1、产品定位

高德MCP(Model Communication Protocol)Server是专为AI应用设计的出行领域服务中台,通过标准化协议解决大模型与外部数据/工具的通信问题。其核心价值在于:

  1. 破除数据孤岛:提供12类高鲜度出行数据(LBS、路径规划、天气等)
  2. 场景化赋能:覆盖行前规划→行中导航→行后服务的全流程
  3. 协议标准化:基于SSE(Server-Sent Events)实现实时数据推送


2、技术架构亮点

产品架构图:


  1. 通信协议
    • 采用SSE长连接技术,支持单向实时数据流(对比WebSocket双工通信更轻量)
    • 语义化JSON输出,提升大模型理解准确率
  2. 无缝衔接能力
    • 独创"攻略→地图"转换技术,支持将AI生成的行程自动转换为高德专属地图
    • 深度链接(Deep Link)实现一键唤起导航/打车等原生功能

3、核心API能力矩阵

能力类型典型场景关键参数示例输出价值
地理编码地址→坐标转换address+city标准化位置数据
路径规划多模态交通方案生成origin+destination+transportType带实时路况的出行方案
POI搜索智能地点推荐keywords+location+radius结构化商业数据
专属地图生成AI行程→可执行地图行程描述+途径点位可导航的个性化地图

4、开发者优势

  1. 零运维架构:全托管云服务,自动扩容
  2. 协议兼容性:同时支持SSE和传统HTTP请求
  3. 语义优化:对导航结果、POI数据等进行了LLM友好型改造
  4. 实时性保障:天气/路况数据更新延迟<1分钟

5、典型应用场景

# 示例:将AI生成的行程转换为高德地图
def generate_amap_tour(tour_plan):
    mcp_params = {
        "trip_name": tour_plan.title,
        "waypoints": [
            {"lat": 39.9, "lng": 116.4, "note": "故宫参观2小时"}, 
            {"lat": 39.91, "lng": 116.3, "note": "午餐推荐"}
        ]
    }
    response = requests.post(MCP_ENDPOINT, json=mcp_params)
    return response.data["deeplink"]  # 可直接唤起高德APP的地图链接

6、演进方向

  1. 即将支持实时交通事件订阅(如封路提醒)
  2. 多模态输出能力(语音导航指令生成)
  3. 与车载系统的深度集成

建议开发者重点关注「专属地图生成」与「多路径规划」的组合使用,可构建智能旅行助手类应用。官方提供的SSE接入方案仅需3步即可完成基础对接。


2025-05-18(日)

<think>好的,用户的问题是关于Spring AI Starter MCP Server WebMVC的配置和使用方法。我需要先回忆一下之前提到的相关信息,特别是引用[1]中提到的Spring AI MCP通过Spring Boot集成扩展了MCP Java SDK,提供客户端和服务器启动器。用户现在想具体了解这个项目的配置和使用步骤,可能需要分步骤指导。 首先,我应该确认项目的依赖配置,比如Maven的pom.xml或者Gradle的build.gradle。然后,可能需要引导用户如何初始化项目,比如使用Spring Initializr添加依赖。接下来是配置文件的设置,比如application.properties中的服务器端口和其他参数。然后,可能需要创建控制器或者服务类,使用Spring MVC的注解来处理请求。另外,可能需要提到如何启动应用并进行测试,比如通过curl命令或者Postman发送请求。 同时,用户可能遇到的问题,比如依赖未正确引入,配置项遗漏,或者端口冲突,也需要在注意事项里提到。此外,参考之前的引用内容,确保引用的架构部分被正确提及。最后,生成的相关问题需要围绕配置扩展、客户端使用、日志调试和安全性展开,帮助用户进一步探索。需要检查是否所有步骤都清晰,并符合用户的技术水平,避免使用过于专业的术语,但保持准确性。</think>### Spring AI Starter MCP Server WebMVC 配置与使用指南 #### 一、项目初始化配置 1. **添加依赖** ```xml <dependency> <groupId>org.springframework.ai</groupId> <artifactId>spring-ai-starter-mcp-server-webmvc</artifactId> <version>${spring.ai.version}</version> </dependency> ``` 建议通过Spring Initializr创建项目时勾选"Spring Web"和"Spring AI MCP Server"模块[^1] 2. **配置文件示例** (`application.properties`) ```properties server.port=8080 spring.ai.mcp.endpoint=/ai/api spring.ai.mcp.model-provider=openai spring.ai.mcp.api-key=${YOUR_API_KEY} ``` #### 二、核心功能实现 1. **创建控制器** ```java @RestController @RequestMapping("/ai/api") public class AiController { @PostMapping("/query") public ResponseEntity<AiResponse> handleQuery( @RequestBody AiRequest request) { // 调用MCP SDK处理请求 return new ResponseEntity<>(process(request), HttpStatus.OK); } } ``` 2. **服务配置类** ```java @Configuration @EnableMcpServer public class McpConfig { @Bean public ModelProvider modelProvider() { return new OpenAIModelProvider(); } } ``` #### 三、运行与测试 1. **启动类配置** ```java @SpringBootApplication public class McpServerApplication { public static void main(String[] args) { SpringApplication.run(McpServerApplication.class, args); } } ``` 2. **测试请求示例** ```bash curl -X POST http://localhost:8080/ai/api/query \ -H "Content-Type: application/json" \ -d '{"prompt":"解释量子计算原理"}' ``` #### 四、注意事项 1. API密钥需通过环境变量或配置中心管理 2. 默认使用OpenAI模型,可扩展其他AI服务商 3. 建议启用Spring Security进行接口保护
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

编程乐园

请我喝杯伯爵奶茶~!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值