基于轮廓线模型的图像分割方法是近十几年来图像和视频领域研究的热点。因为轮廓线模型可以将待处理问题的先验知识与各种图像处理算法有效地融合在一起,所以比以往的计算视觉理论具有更强的实用性。在Snakes模型的基础上也产生了很多不同的模型算法。自 1987 年 Kass 提出 Snakes 模型以来,各种基于主动轮廓线的图像分割、理解和识别方法如雨后春笋般蓬勃发展起来。Snakes 模型的基本思想很简单,它以构成一定形状的一些控制点为模板(轮廓线),通过模板自身的弹性形变,与图像局部特征相匹配达到调和,即某种能量函数极小化,完成对图像的分割。再通过对模板的进一步分析而实现图像
的理解和识别。
基本snakes模型家族
基于 Snakes 的思想,在不同的应用背景下,衍生出多种轮廓线模型。
1.1 基本 Snakes 模型
Kass 等提出的原始 Snakes 模型由一组控制点组成,这些点首尾以直线相连构成轮廓线。在 Snakes 的控制点上定义能量函数。弹性能量和弯曲能量合称内部能量(内部力),用于控制轮廓线的弹性形变。选取适当的参数,将能量函数极小化,所对应的就是对物体的分割。在能量函数极小化过程中,弹性能量迅速把轮廓线压缩成一个光滑的圆;弯曲能量驱使轮廓线成为光滑曲线或直线;而图像力则使轮廓线向图像的高梯度位置靠拢。基本 Snakes 模型就是在这 3