人工智能作业三

人工智能作业三

贝叶斯网络

根据图所给出的贝叶斯网络,其中:P(A)=0.5,P(B|A)=1, P(B|~A)=0.5, P(C|A)=1, P(C|A)=0.5,P(D|BC)=1,P(D|B,C)=0.5,P(D|B,C)=0.5,P(D|B,~C)=0。试计算下列概率P(A|D)。

A
B
C
D

极大后验概率

某学校,所有的男生都穿裤子,而女生当中,一半穿裤子,一半穿裙子。男女比例70%的可能性是4:6,有20%可能性是1:1,有10%可能性是6:4,问一个穿裤子的人是男生的概率有多大?

一个穿裤子的人是男生的概率为0.608。
【说明】这一题有别的同学计算结果是0.611,但是我还不能确定哪一种是对的。
2020.01.04更新:哪一个都不对,正确答案是0.4

决策树

设样本集合如下表格,其中A、B、C是F的属性,请根据信息增益标准(ID3算法),画出F的决策树。其中

l o g 2 ( 2 3 ) = − 0.5842 , l o g 2 ( 1 3 ) = − 1.5850 , l o g 2 ( 3 4 ) = − 0.41501 log_2(\frac{2}{3})=-0.5842, log_2(\frac{1}{3})=-1.5850,log_2(\frac{3}{4})=-0.41501 log2(32)=0.5842,log2(31)=1.5850,log2(43)=0.41501

ABCF
0000
0011
0100
0111
1001
1011
1100

决策树如下:

或者:

人工神经网络

阈值感知器可以用来执行很多逻辑函数,说明它对二进制逻辑函数与(AND)的实现过程。

逻辑函数与有两个输入,分别为 x 1 x_1 x1 x 2 x_2 x2,则阈值感知器为 ∑ i = 1 n w i x i − θ = 0 \sum_{i=1}^{n} {w_ix_i-\theta}=0 i=1nwixiθ=0,即 w 1 x 1 + w 2 x 2 − θ = 0 w_1x_1+w_2x_2-\theta=0 w1x1+w2x2θ=0。训练数据为:

x 1 x_1 x1 x 2 x_2 x2 Y Y Y
000
010
100
111

学习过程就是调整权值来减小训练数据的实际输出与感知器算法的理论输出之间的差异。

  • 初始化

    设定初始的权值 w 1 w_1 w1 w 2 w_2 w2和阈值 θ \theta θ [ − 0.5 , 0.5 ] [-0.5,0.5] [0.5,0.5]之间的随机数

  • 计算激活函数值

    根据输出 x 1 ( p ) , x 2 ( p ) x_1(p),x_2(p) x1(p),x2(p)和权值 w 1 , w 2 w_1,w_2 w1,w2计算输出 Y ( p ) Y(p) Y(p),其中 p p p表示迭代的轮数

    Y ( p ) = s t e p [ x 1 ( p ) w 1 + x 2 ( p ) w 2 ] − θ Y(p)=step[x_1(p)w_1+x_2(p)w_2]-\theta Y(p)=step[x1(p)w1+x2(p)w2]θ

    S r e p f u n c t i o n : Srepfunction: Srepfunction:
    Y s t e p = { 1 , if  x > = 0 0 , if  x < 0 Y^{step} = \begin{cases} 1, & \text{if $x>=0$} \\ 0, & \text{if $x<0$} \end{cases} Ystep={1,0,if x>=0if x<0

  • 更新权值

    e ( p ) = Y d ( p ) − Y ( p ) e(p)=Y_d(p)-Y(p) e(p)=Yd(p)Y(p),式中三项分别为:在轮数p的错误大小;理论输出;实际输出

    Δ w i ( p ) = α ∗ x i ( p ) ∗ e ( p ) Δw_i(p)=\alpha*x_i(p)*e(p) Δwi(p)=αxi(p)e(p) α \alpha α为学习率

    w i ( p + 1 ) = w i ( p ) + Δ w i ( p ) w_i(p+1)=w_i(p)+Δw_i(p) wi(p+1)=wi(p)+Δwi(p)

  • 迭代循环

    增加p值,不断重复步骤二和步骤三直到收敛

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值