自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(199)
  • 收藏
  • 关注

原创 Keras深度学习实战(28)——利用单词向量构建情感分析模型

分析隐藏在文本数据背后的情感是自然语言处理的一个基本研究领域,情感分析在推荐系统、语音助手等应用中有着十分重要的作用。本文通过使用 CBOW 模型获取用户评论数据的平均单词向量,然后利用平均单词向量训练情感分类模型,预测用户对于航空公司的评价是正面、负面或者中立的,相比直接使用单词独热编码进行预测,使用单词向量进行预测的模型准确率更高。

2022-10-02 07:30:00 289 6

原创 Keras深度学习实战(27)——循环神经详解与实现

循环神经网络 (Recurrent neural networks, RNN) 是一种十分重要的神经网络模型,基本已经成为机器翻译、语音助手、序列视频分析等应用的标准处理手段。由于其具有记忆特性,可以处理上下文环境有关系的序列数据,因此在自然语言处理领域中有着广泛的应用。本文首先介绍了 RNN 的核心思想及其架构,然后从零开始实现了一个 RNN 模型,并通过前向计算验证了 RNN 的输出,从而对 RNN 的核心机制有更深刻的理解。

2022-09-28 07:30:00 562 8

原创 Keras深度学习实战——使用GloVe模型构建单词向量

我们已经学习了如何构建 fastText 模型以生成单词向量,GloVe (Global Vectors for Word Representation) 是另一种生成单词向量的方式。在本节中,我们将介绍 GloVe 的算法原理,然后介绍如何实现 GloVe 模型生成单词向量。

2022-09-25 07:30:00 524 5

原创 Keras深度学习实战——使用fastText模型构建单词向量

fastText 是另一种用于生成单词向量的神经网络模型,其将每个单词视为最小单位,学习其向量表示形式,用于解决由于单词的不同时态和形式造成无法准确获取其向量的问题。本节中,我们将介绍 fastText 算法模型的基本原理,然后使用第三方库 gensim 库中构建 fastText 模型生成单词向量,并测试使用 fastText 模型得到的单词向量效果。

2022-09-21 07:28:41 449 12

原创 Keras深度学习实战(26)——文档向量详解

本节中,我们首先介绍了文档向量概念提出的背景,然后介绍了文档向量的基本概念以及如何生成文档向量,并了解了构建文档向量的策略,最后使用 Keras 从零开始实现了文档向量生成模型,并使用航空公司的 Twitter 数据集训练得到了数据集的文档向量。

2022-09-18 07:30:00 811 12

原创 Keras深度学习实战(25)——使用skip-gram和CBOW模型构建单词向量

在学习了如何从零开始构建了一个用于计算单词向量的模型之后,我们在本节介绍了如何使用 gensim 库构建 skip-gram 和 CBOW 模型获取单词向量,从而得到了更加准确的单词向量。最后,为了克服数据集中句子数量太少而导致的模型鲁棒性较差的问题,我们介绍了如何使用预训练的单词向量执行向量算术。

2022-09-14 07:30:00 514 16

原创 Keras深度学习实战(24)——从零开始构建单词向量

传统的文本分析中,将单词编码为独热向量导致相似的单词并不具备相似的向量。因此,需要研究如何对文本数据进行编码,以使相似的数据具有相似的编码向量。本节中,介绍了 WordVec 单词向量编码的技术原理,此方法可以将具有相似语义的单词编码为相似向量,然后使用 Keras 从零开始构建单词向量,最后介绍了如何度量单词向量间的相似度以验证具有相似语义的单词是否具有相似的单词向量。

2022-09-11 07:30:00 649 8

原创 Keras深度学习实战(23)——DCGAN详解与实现

深度卷积生成对抗网络 (Deep Convolutional GAN, DCGAN) 将卷积神经网络引入 GAN 中,以代替原始 GAN 中的全连接网络更好地学习图像中的特征。本节中,首先介绍了 DCGAN 的基本思想,然后使用 Keras 从零开始实现用于生成手写数字图片的 DCGAN 模型,可以看到生成的图像效果比原始 GAN 更逼真,最后为了充分验证 DCGAN 模型性能,使用 DCGAN 生成复杂的面部图像。

2022-09-07 07:30:00 993 14

原创 Keras深度学习实战(22)——生成对抗网络详解与实现

生成对抗网络 (Generative Adversarial Networks, GAN) 使用神经网络生成与原始图像集非常相似的新图像,它在图像生成中应用广泛,且 GAN 的相关研究正在迅速发展,以伪造生成与真实图像难以区分的逼真图像。本节首先介绍了对抗生成网络的基本原理,并使用 Keras 从零开始实现了一个对抗生成网络用于生成手写数字图像。

2022-09-04 07:30:00 1377 20

原创 Keras深度学习实战(21)——神经风格迁移详解

在神经风格迁移中,我们需要一个内容图像和一个风格图像,我们的目标是保持内容图像的同时融和风格图像中的风格样式,以组合这两个图像生成全新图像。在本节中,首先介绍了神经风格迁移的核心思想与风格迁移图像的生成流程,然后利用 Keras 从零开始实现了神经风格迁移算法,可以通过修改模型中的超参数来生成不同观感的图像。......

2022-08-28 07:30:00 1392 12

原创 Keras深度学习实战(20)——DeepDream模型详解

DeepDream 利用训练完成的深度卷积神经网络,仅需要优化模型卷积层某个通道的激活值即可生成令人印象深刻的图像。本节首先介绍了 DeepDream 的基本原理,并使用 Keras 实现了 DeepDream 生成模型,不仅能够生成富有艺术感的图像,同时加深对卷积神经网络的背后运行机制的理解。

2022-08-24 07:30:00 889 11

原创 Keras深度学习实战(19)——使用对抗攻击生成可欺骗神经网络的图像

尽管深度神经网络在各种计算机视觉任务上具有很高的准确性,但研究表明它们容易受到微小扰动的影响,从而导致它们输出完全错误的预测结果。本文首先介绍了对抗攻击的基本概念,然后利用 Keras 实现了一种经典的对抗攻击算法,通过在图中添加微小扰动令红狐图像被错误的预测为山猫图像,我们也可以通过改变攻击的目标索引,来使图像被错误分类为其它类别。

2022-08-21 07:30:00 1125 20

原创 Keras深度学习实战(18)——语义分割详解

语义分割 (Semantic Segmentation) 是为了便于图像分析而为图像中的每个像素分配标签的过程,可以将语义分割认为是一种为场景理解提供支持的高层任务。本节将介绍语义分割的基本概念,并实现交通图像语义分割模型,以便我们能够区分图像中的多个对象。...

2022-08-14 07:15:00 885 12

原创 Keras深度学习实战(17)——使用U-Net架构进行图像分割

图像分割是指将图像分成若干互不重叠的子区域,使得同一个子区域内的特征具有一定相似性、不同子区域间特征呈现较为明显的差异。图像分割是是计算机视觉中一项基础的任务,已经广泛应用于许多实际场景中。在本节中,我们将学习如何使用神经网络模型,更具体的说是使用 U-Net 模型架构执行图像分割任务。...

2022-08-10 07:30:00 1119 20

原创 Keras深度学习实战——车辆转弯角度预测

自动驾驶已经引发了各界的广泛关注,无人驾驶在快递等行业进入了落地阶段。在车辆行驶过程中,频繁发生的交通事故严重危害着乘车人的生命安全,自动驾驶车辆转弯角度控制的研究,能有效避免交通事故的发生。在本节,我们将构建神经网络模型根据提供的图像预测汽车需要转弯的角度。...

2022-08-07 07:30:00 1051 18

原创 Keras深度学习实战——交通标志识别

在道路交通场景中,交通标志识别作为驾驶辅助系统与无人驾驶车辆中不可缺少的技术,为车辆行驶中提供了安全保障。在道路上行驶的车辆,道路周围的环境包括许多重要的交通标志信息,根据交通标志信息在道路上做出正确的驾驶行为,通常能够避免发生交通事故。交通标志识别可以检测并识别当前行驶道路上的交通标志,然后得出有关道路的必要信息。鉴于交通标志识别在自动驾驶等应用中的重要性,在节中,我们将学习使用卷积神经网络实现交通标志识别。...

2022-08-01 07:59:05 1147 20

原创 Keras深度学习实战——推荐系统数据编码

我们已经学习了数据编码的必要性,同时以图像编码为例实现了自编码器 (AutoEncoder) 及其多种变体。推荐系统是利用客户和商品信息,根据用户的兴趣特点和购买行为,向用户推荐用户感兴趣的信息和商品。在本节中,我们将在电影评价相关的数据集中对用户和电影进行编码。......

2022-07-27 07:13:32 1117 12

原创 Keras深度学习实战(16)——自编码器详解

对于高维输入向量的压缩对于许多应用来说都是至关重要的,不仅可以降低数据处理难度,同时也可以增加数据传输效率。本文介绍了在深度学习领域常用的数据编码技术——自编码器 (AutoEncoder),并使用 MNIST 数据集训练了多个自编码器变体模型;最后,还将二维编码向量进行可视化,以验证相似的图像是否具有相似的嵌入。...

2022-07-24 07:06:36 1389 15

原创 Keras深度学习实战(15)——从零开始实现YOLO目标检测

YOLO 是基于锚框的经典目标检测算法,能够实现快速检测的同时具有较高的准确率,其将目标检测任务看作目标区域预测和类别预测的回归问题,实现端到端的目标检测。本文首先介绍了 YOLO 模型的核心思想与目标检测流程,然后使用 Keras 从零开始实现了一个基于 YOLO 的目标检测模型。......

2022-07-20 07:30:00 1779 25

原创 Keras深度学习实战(14)——从零开始实现R-CNN目标检测

R-CNN 是基于候选区域的经典目标检测算法,其将卷积神经网络引入目标检测领域。本文首先介绍了 R-CNN 模型的核心思想与目标检测流程,然后使用 Keras 从零开始实现了一个基于 R-CNN 的目标检测模型,最后介绍了非极大值抑制用于移除相似的预测边界框。.........

2022-07-17 07:38:46 1722 15

原创 Keras深度学习实战(13)——目标检测基础详解

目标检测一直是计算机视觉领域最具有挑战性的问题之一,同时也是具有广泛应用场景的任务之一。本节中,首先介绍了目标检测的基本概念,然后介绍了如何制作用于训练目标检测模型的数据集,最后讲解了如何生成候选区域和常用于目标检测模型性能评估的指标。通过介绍目标检测中的相关技术,为接下来实现目标检测算法奠定基础。.........

2022-07-14 09:56:54 1662 13

原创 Keras深度学习实战——基于ResNet模型实现性别分类

通常而言,神经网络越深,其模型性能就越好。但随着网络层数的增加,梯度消失的问题也开始显现,网络中的梯度会变得很小,同时网络性能也会下降。深度残差网络 (ResNet) 的提出就是为了解决上述问题。通过使用跳跃连接,使网络具备了一定程度的深度自适应能力。本文首先介绍了 ResNet 的核心思想和网络架构,然后利用预训练的 ResNet50 进行性别分类实战。......

2022-07-11 07:45:00 1343 12

原创 Keras深度学习实战——基于Inception v3实现性别分类

Inception 将卷积核分组处理,使用多个多个小尺寸的卷积核和一个池化操作,并将操作后的结果在通道维度进行堆叠。一方面增加了网络的宽度,另一方面同时网络中的卷积的大小不一样,可以增加网络对不同尺度的适应性。在保证模型质量的前提下,极大的减少模型参数个数。在本节中,我们将对 Inception 模型的核心思想进行介绍,然后使用基于预训练的 Inception 体系结构实现性别分类。......

2022-07-06 08:11:56 1366 32

原创 Keras深度学习实战——基于VGG19模型实现性别分类

VGG19 是 VGG16 的改进版本,具有更多的卷积和池化操作。本文首先简要介绍了 VGG19 的架构,并使用 Keras 中预训练的 VGG19 模型进行性别分类实战。

2022-07-01 07:11:02 1949 28

原创 Keras深度学习实战(12)——面部特征点检测

面部关键点的定位通常是许多面部分析方法和算法中的关键步骤。在本节中,我们介绍了如何通过训练卷积神经网络来检测面部的关键点,首先通过预训练模型提取特征,然后利用微调模型预测图像中人物的面部关键点。............

2022-06-27 13:02:08 2115 20

原创 Keras深度学习实战(11)——可视化神经网络中间层输出

我们已经学习了如何构建了卷积神经网络 (Convolutional Neural Network, CNN) 模型,并且看到了其具有的强大性能。但是,有关 CNN 模型学习到的内容,对于我们来说仍然是一个黑匣子。在本节中,将介绍如何提取模型中各种卷积核学习到的内容特征,并对比 CNN 中开始几个卷积层中的卷积核学习到的内容与最后几个卷积层中的卷积核学习到的内容。...............

2022-06-24 10:20:55 2336 36

原创 Keras深度学习实战(10)——迁移学习详解

迁移学习 (Transfer Learning) 是机器学习中的一个重要研究方向,指将一个预训练的模型重新用于另一个任务中,和从零开始训练卷积神经网络相比,利用迁移学习,只需要少量样本即可训练得到性能较好的模型。本文我们将使用预训练的 VGG16 模型利用迁移学习进行性别分类任务实战。......

2022-06-19 12:36:31 2035 35

原创 Keras深度学习实战(9)——卷积神经网络的局限性

我们已经学习了卷积神经网络 (Convolutional Neural Network, CNN) 的强大性能。虽然卷积神经网络的局部连接、权值共享和层次化表达等特性保证了网络模型可以有效的从大量样本中学习到数据的相应特征、避免了复杂的特征提取过程,但与其它模型一样,卷积神经网络同样也具有一定的局限性,本节将通过一系列实战来介绍卷积神经网络的一些局限性。............

2022-06-16 10:12:40 1685 37

原创 Keras深度学习实战(8)——使用数据增强提高神经网络性能

根据经验,我们知道对于给定的图像,即使我们平移,旋转或缩放图像,图像的标签也将保持不变。数据增强是从给定的图像集中创建更多图像的一种方法,即通过旋转,平移或缩放它们并将它们映射到原始图像的标签,以扩充数据集。本节中,将介绍通过增加训练数据集的数据量能够提高神经网络的模型性能。.........

2022-06-09 10:00:31 2176 32

原创 Keras深度学习实战——使用卷积神经网络实现性别分类

我们已经学习了卷积神经网络 (Convolutional Neural Network, CNN) 的工作原理以及 CNN 模型在解决图像识别问题中的优越性。在本节中,我们将通过构建性别分类模型来验证 CNN 模型性能,从而进一步加深对 CNN 工作原理的了解。......

2022-06-05 11:43:05 1915 18

原创 Keras深度学习实战(7)——卷积神经网络详解与实现

传统深度前馈神经网络的局限性之一是它并不满足平移不变性,且容易受图像中对象大小的影响。卷积神经网络 (Convolutional Neural Network, CNN) 的提出正是用于解决传统神经网络的这些缺陷。即使对象位于图片中的不同位置或其在图像中具有不同占比,CNN 也能够正确的处理这些图像,因此在对象分类/检测任务中更加有效。本节详细介绍了 CNN 的基本概念与计算流程,同时使用 Keras 构建 CNN 模型识别手写数字。.........

2022-06-02 09:39:46 3712 73

原创 PyTorch强化学习实战(1)——强化学习环境配置与PyTorch基础

工欲善其事,必先利其器。为了更专注于学习强化学习的思想,而不必关注其底层的计算细节,我们首先搭建相关强化学习环境,包括 PyTorch 和 Gym,其中 PyTorch 是我们将要使用的主要深度学习框架,Gym 则提供了用于各种强化学习模拟和任务的环境。除此之外,本文还介绍了一些 PyTorch 的基础知识,以及 Gym 环境的使用方法,为之后的强化学习实战奠定基础。

2022-05-29 11:26:52 4738 26

原创 Keras深度学习实战——股价预测

我们已经学习了使用神经网络进行音频、文本等非结构化数据和房价、信用等结构化数据分析的相关任务。本节,通过股价预测应用,了解了神经网络在处理时间序列数据的一般流程,并学习了使用函数式 API 来构建复杂神经网络,通过利用相关新闻数据信息来提高预测准确性。

2022-05-24 07:50:11 3975 34

原创 Keras深度学习实战——音频分类

我们已经了解了在结构化数据集以及非结构化文本数据上执行建模的策略。在本节中,我们将继续学习神经网络在拟合非结构化数据中的强大性能——如何在输入为音频的情况下执行分类任务。本文提取与音频文件相对应的梅尔倒谱系数 (MFCC) 作为音频特征,并构建神经网络对 。wav 格式的音频进行分类。

2022-05-21 11:01:12 2315 9

原创 Keras深度学习实战——新闻文本分类

在先前的应用实战中,我们分析了结构化的数据集,即数据集中包含变量及其对应实际输出值。但是现实式结构更多的数据是非结构化的,并没有预定义的数据模型,文本、图像和音频等均属于非结构化数据。在本节中,将介绍新闻文本分类任务,处理一个以文本作为输入的非结构化数据集,预期的输出是文本相关的分类主题。

2022-05-18 08:17:42 1653 12

原创 Keras深度学习实战——房价预测

在本节中,我们介绍了神经网络的实际应用,使用 Boston 房价数据集,通过尝试预测房屋的价格来研究连续输出问题,并介绍了如何在网络训练过程中使用自定义损失函数。

2022-05-15 10:18:28 2613 24

原创 Keras深度学习实战——信用预测

在金融服务行业中,某些客户的违约是导致收入损失的主要来源之一。但是,只有极少数客户会违约。因此,这一分类问题的关键在于识别稀有事件。本节中,我们尝试构建二分类神经网络解决用户信用预测问题,在模型构建过程中展示了多种数据预处理技术,同时也讲解了如何在不平衡数据集中,对不同类别赋予不同权重用来提高模型性能。

2022-05-12 10:34:45 2188 12

原创 一文开启无监督学习之旅

本文主要介绍无监督学习中最重要的分枝之一——聚类。 当我们需要为在不带有标签的数据中挖掘所需的潜在信息时,聚类通常是我们的首选算法。介绍了三种不同的聚类算法,这 3 种算法中从不同的角度解决了聚类任务。K-means 聚类算法试图找到能够归纳数据样本的质心,并围绕它们构建簇。层次聚类方法是一种自下而上的方法,而 DBSCAN 聚类算法引入了核心和密度等概念。同时,由于数据集中缺少标签,因此监督学习中的大多评价标准并不能用于聚类算法,本节中还介绍了新的评估指标用于评价聚类算法,例如调整兰德系数和轮廓系数。

2022-05-09 09:44:14 999 13

原创 一文开启监督学习之旅

近年来,机器学习已经成为最热门的研究领域之一,机器学习通常可以分为监督学习和无监督学习。本文主要介绍监督学习的两种主要场景:分类和回归。介绍了数据分类问题并构建分类模型,了解了多种数据预处理技术,其中还包括标签编码。还介绍了使用逻辑回归构建分类器,了解了如何构建混淆矩阵。还介绍了如何使用支持向量机构建分类模型。在回归任务中,介绍了如何将线性和多项式回归用于单变量和多变量数据。

2022-05-09 09:41:59 1227

原创 一文开启自然语言处理之旅

自然语言处理是人工智能领域最火热的研究方向之一,NLP 为计算机真正理解人类语言提供了基础。在本节中,我们了解了自然语言处理中的各种基本概念,首先介绍了分词技术以将输入文本分成多个 token,然后学习了如何使用词干提取和词形还原将单词转换为基本形式,并介绍了文本分块技术,根据预定义的条件将输入文本分成多个块。然后,综合使用上述方法基于词袋模型构建了一个文档矩阵,学习了如何使用机器学习技术对文本进行分类,最后,介绍了如何识别给定文本中的主题。

2022-05-09 09:35:36 1676 4

用于目标检测的 YOLO V3 模型架构及权重文件(含 OpenCV 使用示例)

用于目标检测的 YOLO V3 模型架构及权重文件,用于执行目标检测推理阶段,可用于构建 OpenCV 目标检测计算机视觉项目,包含 OpenCV 使用示例。

2021-09-30

用于目标检测的 MobileNet-SSD 模型架构及权重文件(使用 Caffe 框架进行预训练)

用于目标检测的 MobileNet-SSD 模型架构及权重文件,使用 Caffe 进行预训练模型执行目标检测,可用于 OpenCV 目标检测计算机视觉项目,包含使用示例。

2021-09-30

用于图像分类的 ResNet-50 模型架构及权重文件(使用 Caffe 框架进行预训练)

用于图像分类的 ResNet-50 模型架构及权重文件,使用 Caffe 进行预训练模型执行图像分类,可用于 OpenCV 图像分类计算机视觉项目,包含使用示例。

2021-09-30

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除