PyTorch生成式人工智能(8)——深度卷积生成对抗网络
0. 前言
在本节中,我们的目标是创建高分辨率的彩色动漫面部图像,生成器通过镜像鉴别器网络中的步骤来生成图像。但本节中所使用高分辨率彩色图像包含的像素比低分辨率灰度图像多得多。如果仅使用全连接层,模型中的参数数量会大幅增加,导致训练效率低下。因此,我们转向使用卷积神经网络 (Convolutional Neural Network, CNN)。在 CNN
中,每个神经元仅与输入的一个小区域相连接,这种局部连接减少了参数数量,使得网络更加高效,从而加快了训练时间并降低了计算成本。CNN
能够更有效地捕捉图像数据中的空间层次结构,因为它们将图像视为多维对象,而不是一维向量。我们将使用卷积对输入图像进行下采样并提取其空间特征,鉴别器网络使用卷积层,而生成器通过使用转置卷积层(也称为反卷积或上采样层)来镜像卷积层进行上采样,以生成高分辨率的特征图。
1. 卷积与反卷积
卷积层和反卷积层是卷积神经网络中的两个基本构建块,广泛应用于图像处理和计算机视觉任务。它们有不同的目的和特性:卷积层用于特征提取,将一组带有可学习参数的的卷积核应用于输入数据,以检测不同空间尺度上的模式和特征,卷积层对于捕获输入数据的层次化表示至关重要;而反卷积层用于上采样或生成高分辨率的特征图。
1.1 卷积
为了创建高分辨率的彩色图像,我们需要比简单的