二阶常系数齐次线性微分方程的通解

二阶常系数齐次线性微分方程的通解

*本文略去了很多证明,只记录结论
*文中的微分方程均指代二阶常系数线性微分方程

二阶常系数齐次线性微分方程的形式为:

								 ay″+by′+c=0

由于是二阶线性微分方程,所以它有两个解,记为y1、y2,若y1/y2≠C(即两个解之比不为常数),则y1、y2线性无关,那么微分方程的通解为:

									y=C1y1+C2y2

我们可以通过微分方程的特征方程来计算微分方程的两个解:
对于微分方程:

									 ay″+by′+cy=0

它的特征方程为:

a r 2 r^2 r2+br+c=0

(微分方程的n阶导对于特征方程的n次幂)
写出微分方程的特征方程后即可以用求根公式求出特征方程的解:
r 1 , 2 r_{1,2} r1,2= − b ± Δ 2 a \frac{-b\pm \sqrt{\Delta }}{2a} 2ab±Δ ,Δ= b 2 b^2 b2−4ac

以下分情况讨论:
①当Δ>0Δ>0时,r1、r2是两个不相等的实根

r 1 = − b + Δ 2 a r_{1}=\frac{-b+\sqrt{\Delta }}{2a} r1=2ab+Δ r 2 = − b − Δ 2 a r_{2}=\frac{-b-\sqrt{\Delta }}{2a} r2=2abΔ

微分方程的通解为:

y = c 1 e r 1 x + c 2 e r 2 x y=c_{1}e^{r_{1}x}+c_{2}e^{r_{2}x} y=c1er1x+c2er2x

②当Δ=0Δ=0时,r1、r2是两个相等的实根

r 1 = r 2 = − b 2 a r_{1}=r_{2}=-\frac{b}{2a} r1=r2=2ab

微分方程的通解为:

y = ( c 1 + c 2 x ) e r x y=\left ( c_{1}+c_{2} x\right )e^{rx} y=(c1+c2x)erx

**③当Δ<0Δ<0时, r 1 r_{1} r1 r 2 r_{2} r2是一对共轭复根:

r 1 r_{1} r1=α+βi, r 2 r_{2} r2=α−βi

其中

α = − b 2 a \alpha =-\frac{b}{2a} α=2ab , β = − Δ 2 a \beta =\frac{\sqrt{-\Delta }}{2a} β=2aΔ

微分方程的通解为:

y = ( c 1 cos ⁡ β x + c 2 sin ⁡ β x ) e a x y=\left ( c_{1}\cos \beta x+c_{2}\sin \beta x \right )e^{ax} y=(c1cosβx+c2sinβx)eax

转载自:https://blog.csdn.net/baishuiniyaonulia/article/details/79687977
其中数学公式的写出也是话费了我一大波功夫,故在此列出公式转换公式,只需在公式前后加上两个$即可。
公式转换地址:https://private.codecogs.com/latex/eqneditor.php

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值