二阶常系数齐次线性微分方程的通解
*本文略去了很多证明,只记录结论
*文中的微分方程均指代二阶常系数线性微分方程
二阶常系数齐次线性微分方程的形式为:
ay″+by′+c=0
由于是二阶线性微分方程,所以它有两个解,记为y1、y2,若y1/y2≠C(即两个解之比不为常数),则y1、y2线性无关,那么微分方程的通解为:
y=C1y1+C2y2
我们可以通过微分方程的特征方程来计算微分方程的两个解:
对于微分方程:
ay″+by′+cy=0
它的特征方程为:
a r 2 r^2 r2+br+c=0
(微分方程的n阶导对于特征方程的n次幂)
写出微分方程的特征方程后即可以用求根公式求出特征方程的解:
r
1
,
2
r_{1,2}
r1,2=
−
b
±
Δ
2
a
\frac{-b\pm \sqrt{\Delta }}{2a}
2a−b±Δ,Δ=
b
2
b^2
b2−4ac
以下分情况讨论:
①当Δ>0Δ>0时,r1、r2是两个不相等的实根
r 1 = − b + Δ 2 a r_{1}=\frac{-b+\sqrt{\Delta }}{2a} r1=2a−b+Δ r 2 = − b − Δ 2 a r_{2}=\frac{-b-\sqrt{\Delta }}{2a} r2=2a−b−Δ
微分方程的通解为:
y = c 1 e r 1 x + c 2 e r 2 x y=c_{1}e^{r_{1}x}+c_{2}e^{r_{2}x} y=c1er1x+c2er2x
②当Δ=0Δ=0时,r1、r2是两个相等的实根
r 1 = r 2 = − b 2 a r_{1}=r_{2}=-\frac{b}{2a} r1=r2=−2ab
微分方程的通解为:
y = ( c 1 + c 2 x ) e r x y=\left ( c_{1}+c_{2} x\right )e^{rx} y=(c1+c2x)erx
**③当Δ<0Δ<0时, r 1 r_{1} r1、 r 2 r_{2} r2是一对共轭复根:
r 1 r_{1} r1=α+βi, r 2 r_{2} r2=α−βi
其中
α = − b 2 a \alpha =-\frac{b}{2a} α=−2ab , β = − Δ 2 a \beta =\frac{\sqrt{-\Delta }}{2a} β=2a−Δ
微分方程的通解为:
y = ( c 1 cos β x + c 2 sin β x ) e a x y=\left ( c_{1}\cos \beta x+c_{2}\sin \beta x \right )e^{ax} y=(c1cosβx+c2sinβx)eax
转载自:https://blog.csdn.net/baishuiniyaonulia/article/details/79687977
其中数学公式的写出也是话费了我一大波功夫,故在此列出公式转换公式,只需在公式前后加上两个$即可。
公式转换地址:https://private.codecogs.com/latex/eqneditor.php