对于形如 y ′ ′ + p y ′ + q y = 0 y''+py'+qy=0 y′′+py′+qy=0 的常微分二阶线性齐次微分方程,需要先求出两个线性无关的实数域特解 y 1 y_1 y1 和 y 2 y_2 y2 (即 y 1 y 2 ≠ C \frac{y_1}{y_2}\ne C y2y1=C ),再将两个特解叠加得到通解 y = C 1 y 1 + C 2 y 2 y=C_1y_1+C_2y_2 y=C1y1+C2y2。可以通过求解特征方程来求出微分方程的特解。
设解的形式为 y = e r x y=e^{rx} y=erx ,将其带入微分方程可得 ( r 2 + p r + q ) e r x = 0 (r^2+pr+q)e^{rx}=0 (r2+pr+q)erx=0 。由于 e r x e^{rx} erx不为0, 可得 r 2 + p r + q = 0 r^2+pr+q=0 r2+pr+q=0 ,该等式被称为微分方程的特征方程。特征方程是一个一元二次代数方程,其解可由求根公式得到,有三种情况:
(1) Δ = p 2 − 4 q > 0 \Delta = p^2-4q>0 Δ=p2−4q>0,存在两个不相等的实根 r 1 ≠ r 2 r_1\ne r_2 r1=r2
则两个特解为 y 1 = e r 1 x , y 2 = e r 2 x y_1=e^{r_1x}, y_2=e^{r_2x} y1=er1x,y2=er2x,通解为 y = C 1 e r 1 x + C 2 e r 2 x y=C_1e^{r_1x}+C_2e^{r_2x} y=C1er1x+C2er2x
(2) Δ = p 2 − 4 q = 0 \Delta = p^2-4q=0 Δ=p2−4q=0,存在两个相等的实根 r = r 1 = r 2 r=r_1=r_2 r=r1=r2
由根的判别公式可知,此时 r = − p 2 r=-\frac{p}{2} r=−2p
此时只有一个特解 y 1 = e r x y_1=e^{rx} y1=erx,因此需要构建出另一个线性无关的特解,设 y 2 = u ( x ) e r x y_2=u(x)e^{rx} y2=u(x)erx,可知 y 2 y 1 = u ( x ) ≠ C \frac{y_2}{y_1}=u(x)\ne C y1y2=u(x)=C,满足线性无关条件
将
y
2
=
u
(
x
)
e
r
x
y_2=u(x)e^{rx}
y2=u(x)erx 带入原微分方程
y
′
′
+
p
y
′
+
q
y
=
0
y''+py'+qy=0
y′′+py′+qy=0 可得
(
u
′
′
+
2
u
′
r
+
u
r
2
+
u
′
p
+
u
r
p
+
u
q
)
e
r
x
=
0
(
u
′
′
+
2
u
′
r
+
u
′
p
)
e
r
x
=
0
(
因为
u
(
r
2
+
r
p
+
q
)
=
0
)
\begin{aligned} (u''+2u'r+ur^2+u'p+urp+uq)e^{rx}&=0\\ (u''+2u'r+u'p)e^{rx}&=0\quad(\text{因为 }u(r^2+rp+q)=0) \end{aligned}
(u′′+2u′r+ur2+u′p+urp+uq)erx(u′′+2u′r+u′p)erx=0=0(因为 u(r2+rp+q)=0)
将
r
=
−
p
2
r=-\frac{p}{2}
r=−2p 带入上式,可得
u
′
′
e
r
x
=
0
⇒
u
′
′
=
0
u''e^{rx}=0\Rightarrow u''=0
u′′erx=0⇒u′′=0
在知道二阶导数 u ′ ′ ( x ) u''(x) u′′(x) 等于0后,不妨设 u ( x ) = x u(x)=x u(x)=x (也可以设 u ( x ) = k x + b u(x)=kx+b u(x)=kx+b,在叠加特解后可以通过合并常数项得到相同通解),则得到特解 y 2 = x e r x y_2=xe^{rx} y2=xerx,有通解 y = ( C 1 + C 2 x ) e r x y=(C_1+C_2x)e^{rx} y=(C1+C2x)erx
(3) Δ = p 2 − 4 q < 0 \Delta = p^2-4q<0 Δ=p2−4q<0,存在共轭复根 r 1 = a + b i , r 2 = a − b i r_1=a+bi, r_2=a-bi r1=a+bi,r2=a−bi
即有特解 y 1 = e ( a + b i ) x , y 2 = e ( a − b i ) x y_1=e^{(a+bi)x}, y_2=e^{(a-bi)x} y1=e(a+bi)x,y2=e(a−bi)x, 根据欧拉公式 e b i = c o s ( b ) + i s i n ( b ) e^{bi}=cos(b)+isin(b) ebi=cos(b)+isin(b) ,可将特解化为 y 1 = e a x ( c o s b x + i s i n b x ) , y 2 = e a x ( c o s b x − i s i n b x ) y_1=e^{ax}(cosbx+isinbx), y_2=e^{ax}(cosbx-isinbx) y1=eax(cosbx+isinbx),y2=eax(cosbx−isinbx), 则有通解 y = e a x [ D 1 ( c o s b x + i s i n b x ) + D 2 ( c o s b x − i s i n b x ) ] y=e^{ax}[D_1(cosbx+isinbx)+D_2(cosbx-isinbx)] y=eax[D1(cosbx+isinbx)+D2(cosbx−isinbx)]。
以上通解含复数,需要将复数项消去。固定通解中的常数项,可以得到两个不含复数的特解:
令 D 1 = D 2 = 1 2 D_1=D_2=\frac{1}{2} D1=D2=21, 可得 u 1 = e a x c o s b x u_1=e^{ax}cosbx u1=eaxcosbx
令 D 1 = 1 2 i , D 2 = − 1 2 i D_1=\frac{1}{2i}, D_2=-\frac{1}{2i} D1=2i1,D2=−2i1, 可得 u 2 = e a x s i n b x u_2=e^{ax}sinbx u2=eaxsinbx
则通解为 y = C 1 u 1 + C 2 u 2 = e a x ( C 1 c o s b x + C 2 s i n b x ) y=C_1u_1+C_2u_2=e^{ax}(C_1cosbx+C_2sinbx) y=C1u1+C2u2=eax(C1cosbx+C2sinbx)
参考资料
常系数二阶线性齐次微分方程的求解 - 知乎 (zhihu.com)
Differential Equations - Complex Roots (lamar.edu)
Differential Equations - Repeated Roots (lamar.edu)