高数知识复习--二阶常系数齐次线性微分方程的通解

二阶常系数齐次线性微分方程一般形式为:
y"+py’+qy=0 (1-1)
其中p,q为常数。
以r^k代替上式中的y(k)(k=0,1,2) ,得一代数方程
r²+pr+q=0
这方程称为微分方程(1-1)的特征方程
按特征根的情况,可直接写出方程1-1的通解。
(1)特征方程有两个不相等的实数根,r1≠r2,则1-1的通解为
y=C1e(r1x)+C2*e(r2x)
(2) 特征方程有两个相等的实数根,r1=r2=r,方程1-1的通解为
y=(C1+C2
x)e^(rx)
(3)特征方程有一对共轭复根,r1=α+i
β,r1=α-iβ,,则方程1-1的通解为
y=e^(αx)(C1
cos(βx)+C2*sin(βx)).

齐次线性微分方程学中的重要内容之一,其解法涉及通解和特解的概念。以下是针对该主题的详细解答: --- ### 方法一:二阶常系数齐次线性微分方程通解 对于形如 $y'' + py' + qy = 0$ 的方程,其中 $p$ 和 $q$ 是常。 #### (1)构造特征方程 $$ r^2 + pr + q = 0 $$ #### (2)求解特征根并分类讨论 - 若有两个不同的实根 $r_1$ 和 $r_2$,则通解为: $$ y(x) = C_1e^{r_1x} + C_2e^{r_2x} $$ - 若有一个重根 $r$,则通解为: $$ y(x) = (C_1 + C_2x)e^{rx} $$ - 若有一对共轭复根 $r_{1,2} = \alpha \pm i\beta$,则通解为: $$ y(x) = e^{\alpha x}(C_1\cos(\beta x) + C_2\sin(\beta x)) $$ --- ### 方法二:常系数齐次线性微分方程通解 对于一般形式的阶方程: $$ y^{(n)} + a_{n-1}y^{(n-1)} + \cdots + a_1y' + a_0y = 0 $$ #### (1)构造特征方程 $$ r^n + a_{n-1}r^{n-1} + \cdots + a_1r + a_0 = 0 $$ #### (2)根据特征根的情况写出通解 若特征根中有单根、多重根或复根,则分别按规则组合得到最终通解--- ### 方法三:非齐次线性微分方程的特解 对于非齐次方程的标准形式: $$ y'' + py' + qy = f(x) $$ #### (1)先求对应齐次方程的通解 $y_h(x)$ 按照前述方法计算齐次方程的通解。 #### (2)再求非齐次方程的一个特解 $y_p(x)$ 常用方法包括: - **待定系法**:当 $f(x)$ 是多项式、指、正弦/余弦函及其组合时适用。 - **参变异法**:适用于更复杂的 $f(x)$ 形式。 总解为: $$ y(x) = y_h(x) + y_p(x) $$ --- ### 示例代码实现(Python) 以下是一个简单示例,展示如何用 Python 计算二阶常系数齐次线性微分方程的特征根: ```python from sympy import symbols, solve # 定义变量 r = symbols('r') p, q = 3, 2 # 参 p 和 q # 构造特征方程 char_eq = r**2 + p*r + q # 求解特征根 roots = solve(char_eq, r) print("特征根:", roots) ``` --- ### 注意事项 1. 变系齐次线性微分方程通常需要采用幂级法或其他级技术来求解。 2. 如果题目提供了初始条件,可通过代入这些条件进一步确定具体解。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值