二阶常系数非齐次线性微分方程的通解

二阶常系数非齐次线性微分方程的通解

见课文原文:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
下面看转的一片博客文章:

二阶常系数非齐次线性微分方程的形式为:

							    ay″+by′+cy=f(x)

微分方程的通解 = 对应的二阶常系数齐次线性微分方程通解 + 自身的一个特解
简单记为:通解 = 齐次通解 + 特解。

二阶常系数齐次线性微分方程通解的解法:二阶常系数齐次线性微分方程的通解

下面只需要解出微分方程的特解即可

对应微分方程:

							    ay″+by′+cy=f(x)

右式f(x)有两种形式:
①f(x)= e λ x P m ( x ) e^{\lambda x}Pm(x) eλxPm(x)
此时微分方程对应的特解为:
y∗=xkRm(x)eλx

其中:在这里插入图片描述
得到这个不完全的特解后根据需要求出其不同阶的导数然后带入微分方程,即可解出特解中的系数,到这里,就得到了微分方程的完整特解,于齐次通解相加即的微分方程的通解。

例:
求微分方程 2y″+y′−y=2 e x e^{x} ex 的通解

解:
微分方程对应的齐次微分方程的特征方程为 2 r 2 r^{2} r2+r−1=0
可得通解:
y = c 1 e − x + c 2 e 1 2 x y=c^{_{1}}e^{-x}+c^{_{2}}e^{\frac{1}{2}x} y=c1ex+c2e21x

微分方程的右式f(x)=2e^x满足f(x)= e λ x e^{\lambda x} eλxPm(x)型,且λ=1,m=0λ=1,m=0,
所以,设特解为:

y∗=a e x e^{x} ex

所以y∗=a e x e^{x} ex、y∗′=a e x e^{x} ex、y∗″=a e x e^{x} ex
带入微分方程左式得:2a e x + a e x − a e x e^{x}+ae^{x}−ae^{x} ex+aexaex=2e^{x}

得:a=1

所以特解为:

y∗= e x e^{x} ex

微分方程的通解为:

y = c 1 e − x + c 2 e 1 2 x + e x y=c^{_{1}}e^{-x}+c^{_{2}}e^{\frac{1}{2}x}+e^{x} y=c1ex+c2e21x+ex

转自:https://blog.csdn.net/baishuiniyaonulia/article/details/79690752

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值