深度学习作业二

这个作业对应需要掌握:

单隐藏层下的神经网络的构建,正向传播以及反向传播。

在做作业的时候有一个地方找了很久才把错误找出来:
因为这个作业解决的是一个二分类问题,所以在输出层的时候需要使用sigmoid作为激励函数,而自己在隐藏层和输出层都使用了tanh()作为激励函数,导致最后的结果出现错误,找了很久才发现。。。


先上此次作业的神经网络的架构:
在这里插入图片描述
很明显这是一个两层网络,一般不包括输入层在内。
其中隐藏层有四个神经元单元,输入层输入的数据集的特征是二维的。

其次说明一下各层的参数W以及b的维度情况:
因为第1层(隐藏层)有4个单元,并且每一个单元都拥有2个输入点,所以
𝑊[1]为4x2的矩阵,b[1]为4x1的矩阵。同理W[2]为1x4的矩阵,b[2]为1x1的矩阵。

再次说明向前传播时的计算公式:
这里引用作业中的文字:

4 - Neural Network model

Mathematically:

For one example x ( i ) x^{(i)} x(i):
z [ 1 ] ( i ) = W [ 1 ] x ( i ) + b [ 1 ] ( i ) (1) z^{[1] (i)} = W^{[1]} x^{(i)} + b^{[1] (i)}\tag{1} z[1](i)=W[1]x(i)+b[1](i)(1)
a [ 1 ] ( i ) = tanh ⁡ ( z [ 1 ] ( i ) ) (2) a^{[1] (i)} = \tanh(z^{[1] (i)})\tag{2} a[1](i)=tanh(z[1](i))(2)
z [ 2 ] ( i ) = W [ 2 ] a [ 1 ] ( i ) + b [ 2 ] ( i ) (3) z^{[2] (i)} = W^{[2]} a^{[1] (i)} + b^{[2] (i)}\tag{3} z[2](i)=W[2]a[1](i)+b[2](i)(3)
y ^ ( i ) = a [ 2 ] ( i ) = σ ( z [ 2 ] ( i ) ) (4) \hat{y}^{(i)} = a^{[2] (i)} = \sigma(z^{ [2] (i)})\tag{4} y^(i)=a[2](i)=σ(z[2](i))(4)

Given the predictions on all the examples, you can also compute the cost J J J as follows:
J = − 1 m ∑ i = 0 m ( y ( i ) log ⁡ ( a [ 2 ] ( i ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − a [ 2 ] ( i ) ) ) (6) J = - \frac{1}{m} \sum\limits_{i = 0}^{m} \large\left(\small y^{(i)}\log\left(a^{[2] (i)}\right) + (1-y^{(i)})\log\left(1- a^{[2] (i)}\right) \large \right) \small \tag{6} J=m1i=0m(y(i)log(a[2](i))+(1y(i))log(1a[2](i)))(6)

Reminder: The general methodology to build a Neural Network is to:
1. Define the neural network structure ( # of input units, # of hidden units, etc).
2. Initialize the model’s parameters
3. Loop:
- Implement forward propagation
- Compute loss
- Implement backward propagation to get the gradients
- Update parameters (gradient descent)


参数的具体含义不再详述。

拥有计算公式后就可以实现向前传播forward_propagation()函数:

# GRADED FUNCTION: forward_propagation

def forward_propagation(X, parameters):
    """
    Argument:
    X -- input data of size (n_x, m)
    parameters -- python dictionary containing your parameters (output of initialization function)
    
    Returns:
    A2 -- The sigmoid output of the second activation
    cache -- a dictionary containing "Z1", "A1", "Z2" and "A2"
    """
    # Retrieve each parameter from the dictionary "parameters"
    ### START CODE HERE ### (≈ 4 lines of code)
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    ### END CODE HERE ###
    
    # Implement Forward Propagation to calculate A2 (probabilities)
    ### START CODE HERE ### (≈ 4 lines of code)
    Z1 = np.dot(W1,X) + b1
    A1 = np.tanh(Z1)
    Z2 = np.dot(W2,A1) + b2
    A2 = sigmoid(Z2)   #注意这里因为是二分类问题,所以输出层使用sigmoid激励函数。
    ### END CODE HERE ###
    
    assert(A2.shape == (1, X.shape[1]))
    
    cache = {"Z1": Z1,
             "A1": A1,
             "Z2": Z2,
             "A2": A2}
    
    return A2, cache   #返回此次向前传播过程中得到的预测值以及各神经单元的激励值,后面反向传播时需要用到

拥有预测值后就可以按照代价公式J通过构造cost_compute()函数计算此次预测的代价值:

# GRADED FUNCTION: compute_cost

def compute_cost(A2, Y, parameters):
    """
    Computes the cross-entropy cost given in equation (13)
    
    Arguments:
    A2 -- The sigmoid output of the second activation, of shape (1, number of examples)
    Y -- "true" labels vector of shape (1, number of examples)
    parameters -- python dictionary containing your parameters W1, b1, W2 and b2
    
    Returns:
    cost -- cross-entropy cost given equation (13)
    """
    
    m = Y.shape[1] # number of example

    # Compute the cross-entropy cost
    ### START CODE HERE ### (≈ 2 lines of code)
    logprobs = Y*np.log(A2) + (1-Y)*np.log(1-A2)
    cost = -1 / m * np.sum(logprobs)
    ### END CODE HERE ###
    
    cost = np.squeeze(cost)     # makes sure cost is the dimension we expect. 
                                # E.g., turns [[17]] into 17 
    assert(isinstance(cost, float))
    
    return cost

然后执行反向传播backward_propagation()函数:

# GRADED FUNCTION: backward_propagation

def backward_propagation(parameters, cache, X, Y):
    """
    Implement the backward propagation using the instructions above.
    
    Arguments:
    parameters -- python dictionary containing our parameters 
    cache -- a dictionary containing "Z1", "A1", "Z2" and "A2".
    X -- input data of shape (2, number of examples)
    Y -- "true" labels vector of shape (1, number of examples)
    
    Returns:
    grads -- python dictionary containing your gradients with respect to different parameters
    """
    m = X.shape[1]
    
    # First, retrieve W1 and W2 from the dictionary "parameters".
    ### START CODE HERE ### (≈ 2 lines of code)
    W1 = parameters["W1"]
    W2 = parameters["W2"]
    ### END CODE HERE ###
        
    # Retrieve also A1 and A2 from dictionary "cache".
    ### START CODE HERE ### (≈ 2 lines of code)
    A1 = cache["A1"]
    A2 = cache["A2"]
    ### END CODE HERE ###
    
    # Backward propagation: calculate dW1, db1, dW2, db2. 
    ### START CODE HERE ### (≈ 6 lines of code, corresponding to 6 equations on slide above)
    dZ2 = A2 - Y
    dW2 = 1 / m * np.dot(dZ2,A1.T)
    db2 = 1 / m * np.sum(dZ2, axis=1, keepdims=True)
    dZ1 = np.dot(W2.T, dZ2) * (1-np.power(A1,2))
    dW1 = 1 / m * np.dot(dZ1, X.T)
    db1 = 1 / m * np.sum(dZ1, axis=1, keepdims=True)
    ### END CODE HERE ###
    
    grads = {"dW1": dW1,
             "db1": db1,
             "dW2": dW2,
             "db2": db2}
    
    return grads

反向传播是神经网络中最难的部分,需要用到高等数学中的链式求导法则,并且还需要使用线性代数的知识进行向量化,是非常难理解的一部分。
这里推荐反向传播的详解:
https://blog.csdn.net/qq_29407397/article/details/90599460

这个比较好懂。


这里的backward_propagation()函数返回的是各个神经单元处参数的梯度,所以向后传播实际上也是求梯度的过程,主要是网络太复杂、链式求导参数太多,最好是动手验算一下。。。

最后执行参数更新update_parameters():

# GRADED FUNCTION: update_parameters

def update_parameters(parameters, grads, learning_rate = 1.2):
    """
    Updates parameters using the gradient descent update rule given above
    
    Arguments:
    parameters -- python dictionary containing your parameters 
    grads -- python dictionary containing your gradients 
    
    Returns:
    parameters -- python dictionary containing your updated parameters 
    """
    # Retrieve each parameter from the dictionary "parameters"
    ### START CODE HERE ### (≈ 4 lines of code)
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    ### END CODE HERE ###
    
    # Retrieve each gradient from the dictionary "grads"
    ### START CODE HERE ### (≈ 4 lines of code)
    dW1 = grads["dW1"]
    db1 = grads["db1"]
    dW2 = grads["dW2"]
    db2 = grads["db2"]
    ## END CODE HERE ###
    
    # Update rule for each parameter
    ### START CODE HERE ### (≈ 4 lines of code)
    W1 -= learning_rate*dW1
    b1 -= learning_rate*db1
    W2 -= learning_rate*dW2
    b2 -= learning_rate*db2
    ### END CODE HERE ###
    
    parameters = {"W1": W1,
                  "b1": b1,
                  "W2": W2,
                  "b2": b2}
    
    return parameters

到这里,该作业构建的神经网络的一次传播就算结束。
真正运行的时候设置一定的迭代次数、学习率即可。


附上训练后的分类效果:

训练集点图:
在这里插入图片描述

使用逻辑回归的分类效果:
在这里插入图片描述

使用在本作业搭建的神经网络上训练后的分类效果:
在这里插入图片描述


换一个训练集:
在这里插入图片描述

训练后分类效果:
在这里插入图片描述


结语:

经过上面的比对,可以很明显的看出神经网络的优越。
同时通过该次作业,稍微入门了神经网络以及其中的正反向传播的原理。不足之处在于本次作业还没有使用正则化来避免出现过拟合的现象。。。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值